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Abstract

Statistical methods relating tensor predictors to scalar outcomes in a regression model generally

vectorize the tensor predictor and estimate the coefficients of its entries employing some form of

regularization, use summaries of the tensor covariate, or use a low dimensional approximation of

the coefficient tensor. However, low rank approximations of the coefficient tensor can suffer if the

true rank is not small. We propose a tensor regression framework which assumes a soft version

of the parallel factors (PARAFAC) approximation. In contrast to classic PARAFAC, where each

entry of the coefficient tensor is the sum of products of row-specific contributions across the tensor

modes, the soft tensor regression (Softer) framework allows the row-specific contributions to vary

around an overall mean. We follow a Bayesian approach to inference, and show that softening the

PARAFAC increases model flexibility, leads to improved estimation of coefficient tensors, more accurate

identification of important predictor entries, and more precise predictions, even for a low approximation

rank. From a theoretical perspective, we show that employing Softer leads to a weakly consistent

posterior distribution of the coefficient tensor, irrespective of the true or approximation tensor rank, a

result that is not true when employing the classic PARAFAC for tensor regression. In the context of

our motivating application, we adapt Softer to symmetric and semi-symmetric tensor predictors and

analyze the relationship between brain network characteristics and human traits.

keywords: adjacency matrix, Bayesian, brain connectomics, graph data, low rank, network data,

parafac, tensor regression

1 Introduction

In many applications, data naturally have an array or tensor structure. When the tensor includes the

same variable across two of its modes, it is often referred to as a network. Graph or network dependence is

often summarized via an adjacency matrix or tensor. For example, data might correspond to an R×R×p
array containing p features measuring the strength of connections between an individual’s R brain regions.

In tensor data analysis, interest often lies in characterizing the relationship between a tensor predictor

and a scalar outcome within a regression framework. Estimation of such regression models most often

requires some type of parameter regularization or dimensionality reduction since the number of entries

of the tensor predictor is larger than the sample size.

In this paper, we propose a soft tensor regression (Softer) framework for estimating a high-dimensional

linear regression model with a tensor predictor and scalar outcome. Softer directly accommodates the

predictor’s structure by basing the coefficient tensor estimation on the parallel factors approximation,
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similarly to other approaches in the literature. However, in contrast to previously developed methodology,

Softer adaptively expands away from its low-rank mean to adequately capture and flexibly estimate more

complex coefficient tensors. Softer’s deviations from the underlying low-rank, tensor-based structure are

interpretable as variability in the tensor’s row-specific contributions.

1.1 Tensor regression in the literature

Generally, statistical approaches to tensor regression fall in the following categories: they estimate the

coefficients corresponding to each tensor entry with entry-specific penalization, regress the scalar outcome

on low-dimensional summaries of the tensor predictor, or estimate a coefficient tensor assuming a low-rank

approximation.

A simple approach to tensor regression vectorizes the tensor predictor and fits a regression model of

the outcome on the tensor’s entries while performing some form of variable selection or regularization.

Examples include Cox and Savoy [2003] and Craddock et al. [2009] who employed support vector classifiers

to predict categorical outcomes based on the participants’ brain activation or connectivity patterns. Other

examples in neuroscience include Mitchell et al. [2004], Haynes and Rees [2005], O’Toole et al. [2005],

Polyn et al. [2005] and Richiardi et al. [2011] (see Norman et al. [2006] for a review). However, this

regression approach to handle tensor predictors is, at the least, unattractive, since it fails to account for

the intrinsic array structure of the predictor, effectively flattening it prior to the analysis.

Alternatively, dimensionality reduction can be performed directly on the tensor predictor reducing it

to low dimensional summaries. In such approaches, the expectation is that these summaries capture all

essential information while decreasing the number of parameters to be estimated. For example, Zhang

et al. [2019] and Zhai and Li [2019] use principal component analysis to extract information on the

participants’ structural and functional brain connectivity, and use these principal components to study

the relationship between brain network connections and outcomes within a classic regression framework.

However, this approach could suffer due to its unsupervised nature which selects principal components

without examining their relationship to the outcome. Moreover, the performance of the low-dimensional

summaries is highly dependent on the number and choice of those summaries, and the interpretation of

the estimated coefficients might not be straightforward.

Ginestet et al. [2017] and Durante and Dunson [2018] developed hypothesis tests for differences in

the brain connectivity distribution among subgroups of individuals, employed in understanding the re-

lationship between categorical outcomes and binary network measurements. Even though related, such

approaches do not address our interest in building regression models with tensor predictors.

An attractive approach to tensor regression performs dimension reduction on the coefficient tensor.

Generally, these approaches exploit a tensor’s Tucker decomposition [Tucker, 1966] and its restriction

known as the parallel factors (PARAFAC) or canonical decomposition. According to the PARAFAC,

a tensor is the sum of D rank-1 tensors, and each entry can be written as the sum of D products of

row-specific elements. The minimum value of D for which that holds is referred to as the tensor’s rank.

Note that the word “row” along a tensor mode is used here to represent rows in the classic matrix sense

(slice of the tensor along the first mode), columns (slice of the tensor along the second mode), or slices

along higher modes.

Within the frequentist paradigm, Hung and Wang [2013] suggested a bi-linear logistic regression
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model in the presence of a matrix predictor. For a tensor predictor, Zhou et al. [2013] and Li et al. [2018]

exploited the PARAFAC and Tucker decompositions respectively, and proposed low rank approximations

to the coefficient tensor. Guhaniyogi et al. [2017] proposed a related Bayesian tensor regression approach

for estimating the coefficient tensor. Even though these approaches perform well for prediction in these

high-dimensional tensor settings, they are bound by the approximation rank in the sense that they cannot

capture any true coefficient tensor. Moreover, these approaches are not directly applicable for identifying

important connections. In this direction, Wang et al. [2014] imposed sparsity in the coefficient tensor of

a multi-linear logistic regression model by penalizing the PARAFAC contributions. Wang et al. [2018]

proposed a related approach to identify small brain subgraphs that are predictive of an individual’s

cognitive abilities. Further, Guha and Rodriguez [2018] assumed a PARAFAC decomposition of the

mean of the coefficient tensor and used a spike-and-slab prior distribution to identify brain regions whose

connections are predictive of an individual’s creativity index.

Low-rank approximations to the coefficient tensor of a linear tensor regression model provide a super-

vised approach to estimating the relationship between a tensor predictor and a scalar outcome. However,

such approximations can lead to a poorly estimated coefficient tensor, misidentification of important

connections, and inaccurate predictions, if the true rank of the coefficient tensor is not small. As we

will illustrate in §3, this performance issue arises due to the inflexibility of the PARAFAC approximation

which specifies that each row has a fixed contribution to all coefficient entries that involve it, leading to

an overly rectangular or block structure of the estimated coefficient tensor. If the true coefficient tensor

does not exhibit such a block structure, a large number of components D might be necessary in order

to adequately approximate it. Due to this rigid structure, we refer to the PARAFAC approximation to

estimating the coefficient tensor as the hard PARAFAC.

Recently, there have been efforts to relax the hard PARAFAC structure employing non-parametric

methodology using kernels, Gaussian-processes, or neural networks [Signoretto et al., 2013, Suzuki et al.,

2016, Kanagawa et al., 2016, Imaizumi and Hayashi, 2016, Maruhashi et al., 2018]. Even though these

methods are very promising, we focus on regression models which include the tensor predictor linearly,

and focus on flexibly estimating the linear functional. The ideas of PARAFAC softening presented here

could be extended to non-linear settings and situations outside the scope of tensor-regression.

1.2 Our contribution

With our main focus being improved estimation and inference over model coefficients, we aim to address

the inflexibility of the hard PARAFAC in the linear tensor regression setting. Towards this goal, we pro-

pose a hierarchical modeling approach to estimate the coefficient tensor. Similarly to the hard PARAFAC,

each entry of the coefficient tensor is the sum of products of row-specific contributions. However, our

model specification allows a row’s contribution to the coefficients that involve it to be entry-specific and

to vary around a row-specific mean. This row-specific mean resembles the row-specific contribution in

the hard PARAFAC approximation, and the entry-specific row contributions can be conceived as random

effects. Conceptually, the row-specific mean can be thought of as a row’s overall importance, and the

entry-specific deviations represent small variations in the row’s importance when interacting with the

rows of the other tensor modes. Allowing for the row contributions to vary by entry leads to the soften-

ing of the hard structure in the PARAFAC approximation, and for this reason, we refer to it as the soft

3



PARAFAC. We refer to the tensor regression model that uses the soft PARAFAC for estimation of the

coefficient tensor as Soft Tensor Regression (Softer).

We follow a fully Bayesian approach to inference which allows for straightforward uncertainty quan-

tification in the coefficient estimates and predictions. By studying the induced prior distribution on the

coefficient tensor, we choose sensible values for the hyperparameters. Importantly, the flexible structure

of the soft PARAFAC allows for Softer to capture any true coefficient tensor without increasing the base

rank, in contrast to existing models that use strictly low-rank approximations. We explicitly show this

by proving that the imposed prior structure on the coefficient tensor has full support on a large class

including true tensors of any rank, and its posterior distribution is consistent for any base, approximation

rank. We also illustrate it in simulations, where we show that the performance of Softer is quite robust to

the choice of the approximation rank. Due to its increased flexibility, Softer performs better than strictly

low-rank models in identifying important entries of the tensor predictor. We extend Softer to generalized

linear models and symmetric tensors, widening its applicability.

We use the soft tensor regression framework in a study of the relationship between brain structural

connectomics and human traits for participants in the Human Connectome Project (HCP; Van Essen et al.

[2013]). In the last few years, HCP has played a very important role in expanding our understanding

of the human brain by providing a database of anatomical and functional connections and individual

demographics and traits on over a thousand healthy subjects. Data availability and increased sample

sizes have allowed researchers across various fields to develop and implement new tools in order to analyze

these complex and rich data (see Cole et al. [2014], McDonough and Nashiro [2014], Smith et al. [2015],

Riccelli et al. [2017], Croxson et al. [2018] among many others). Using data from the HCP, exploiting

state-of-the-art connectomics processing pipelines [Zhang et al., 2018], and within an adaptation of the

supervised Softer framework for symmetric tensor predictors, we investigate the relationship between

structural brain connection characteristics and a collection of continuous and binary human traits.

2 Tensor regression

In this section, we introduce some useful notation and regression of scalar outcomes on a tensor predictor.

2.1 Some useful notation

Let a ∈ Rp1 and b ∈ Rp2 . Then a ⊗ b ∈ Rp1×p2 is used to represent the outer product of a and b

with dimension p1 × p2 and entries [a ⊗ b]ij = aibj . Similarly, for vectors ak ∈ Rpk , k = 1, 2, . . . ,K,

the outer product a1 ⊗ a2 ⊗ · · · ⊗ aK is a K-mode tensor A of dimensions p1, p2, . . . , pK and entries

Aj1j2...jK =
∏K
k=1 ak,jk . For two tensors A1,A2 of the same dimensions, we use A1 ◦A2 to represent the

Hadamard product, defined as the element-wise product of the two tensors. Further, we use 〈A1,A2〉F
to represent the Frobenius inner product, which is the sum of the elements of A1 ◦A2. When the tensors

are vectors (1-mode), the Frobenius inner product is the classic dot product.

For a K-mode tensor A of dimensions p1, p2, . . . , pK , the phrase “jth slice of A along mode k”

is used to refer to the (K − 1)-mode tensor G with dimensions p1, . . . , pk−1, pk+1, . . . , pK and entries

Gj1...jk−1jk+1...jK = Aj1...jk−1jjk+1...jK . For example, the jth slice of a p1 × p2 matrix along mode 1 is the

matrix’s jth row. As a result, we refer to “slice-specific” quantities as “row-specific”even when that slice
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is not along mode 1. For example, for a p1 × p2 matrix, the mean entry of the jth row along mode 2

is the mean of the jth column. Remembering that we use “row” to refer to slices (and not necessarily

to rows in the classic matrix sense) will be useful when discussing the hard PARAFAC in §3 and when

introducing the soft PARAFAC in §4.

2.2 Regression of scalar outcome on tensor predictor

Let Yi be a continuous outcome, Ci = (Ci1, Ci2, . . . , Cip)
T scalar covariates, and Xi a K-mode tensor of

dimensions p1, p2, . . . , pK with entries [Xi]j1j2...jK = Xi,j1j2...jK , for unit i = 1, 2, . . . N . Even though our

development is presented here for continuous outcomes, the relationship between tensor predictors and

binary or categorical outcomes can be similarly evaluated by considering an appropriate link function as

we do in §6. We study the relationship between the outcome and the scalar and tensor predictors by

assuming a linear model

Yi = µ+CT
i δ +

p1∑
j1=1

p2∑
j2=1

· · ·
pK∑
jK=1

Xi,j1j2...jKβj1j2...jK + εi, εi ∼ N(0, τ2), (1)

where δ ∈ Rp and βj1j2...jK ∈ R. Alternatively, organizing all coefficients βj1j2...jK in a tensor B of equal

dimensions to X and j1j2 . . . jK entry equal to βj1j2...jK , the same model can be written as

Yi = µ+CT
i δ + 〈Xi,B〉F + εi. (2)

Since the coefficient tensor B includes
∏K
k=1 pk coefficients, it is infeasible to estimate it without some

form of regularization or additional structure. Penalization or variable selection approaches based on the

vectorization of the tensor predictor are implemented directly on model (1), ignoring the predictor’s tensor

structure. Alternatively, one approach to account for the predictor’s inherent structure is to assume a

low-rank approximation to B based on the PARAFAC decomposition, discussed in §3.

3 Tensor regression using the hard PARAFAC approximation

Under the PARAFAC decomposition, a tensor B ∈ Rp1×p2×...pK can be written as

B =

D∑
d=1

β
(d)
1 ⊗ β(d)

2 ⊗ · · · ⊗ β(d)
K (3)

for some integer D and β
(d)
k ∈ Rpk . The minimum value of D for which B equals its representation (3) is

referred to as its rank. For matrices (2−mode tensors), this decomposition is equivalent to the singular

value decomposition, and D is the matrix rank. We refer to the dth term in the sum as the PARAFAC’s

dth component.

The tensor PARAFAC decomposition leads to a natural approximation of the coefficient tensor in

(2) by assuming that the coefficient tensor is in the form (3) for some small value of D, potentially

much smaller than its true rank. Then, the
∏K
k=1 pk coefficients in B are approximated using D

∑K
k=1 pk

parameters leading to a large reduction in the number of quantities to be estimated.
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However, this reduction in the number of parameters might come at a substantial price if the rank

D used in the approximation is smaller than the tensor’s true rank. According to (3), the (j1j2 . . . jK)

entry of B is equal to

Bj1j2...jK =
D∑
d=1

β
(d)
1,j1

β
(d)
2,j2

. . . β
(d)
K,jK

. (4)

In turn, (4) implies that row jk along mode k has fixed importance, expressed as fixed row contributions

β
(d)
k,jk

, to all coefficient entries Bj1j2...jK that include jk, irrespective of the remaining indices. We refer to

β
(d)
k,jk

as the dth jk-row contribution along mode k. This is best illustrated by considering a rank-1 2-mode

tensor (matrix) B = β1 ⊗ β2 for vectors β1 ∈ Rp1 and β2 ∈ Rp2 . Then, Bj1j2 = β1,j1β2,j2 , and the same

entry β1,j1 is used in Bj1j2 irrespective of j2. This gives rise to a rectangular structure in B in which a

row’s importance, β1,j1 , is fixed across all columns (and similarly for β2,j2).

We further illustrate this in Figure 1a where we plot β1 ⊗ β2 for randomly generated vectors β1, β2 ∈
{0, 1}100. It is evident from Figure 1a that rank-1 matrices are organized in a rectangular structure where

rows and columns are either uniformly important or not. Even though the generated vectors are binary

for ease of illustration, the rectangular structure persists even when β1, β2 include non-binary entries.

The rectangular structure observed in rank-1 tensors indicates that a rank-1 (D = 1) approximation to

the coefficient tensor could be quite limiting. Generally, a rank-D approximation for D > 1 is employed

to estimate the coefficient tensor. Figure 1b shows a matrix B of rank D = 3, summing over three rank-1

tensors like the one in Figure 1a. The rank-3 tensor alleviates but does not annihilate the rectangular

structure observed previously. This is most obvious in Figure 1c where the rows and columns of Figure 1b

are re-ordered according to their mean entry. In Appendix B we further demonstrate the inflexibility of

the hard PARAFAC’s block structure.

The said block structure is also evident in the work by Zhou et al. [2013], Guhaniyogi et al. [2017]

and Li et al. [2018] where they simulated data based on binary coefficient matrices. When these matrices

represent combinations of rectangles (such as squares or crosses), the approximation performed well

in estimating the true coefficient tensor. However, in situations where the true coefficient tensor was

irregular, an increase in the rank was necessary in order to vaguely approximate the truth.

(a) Rank 1 (b) Rank 3 (c) Rank 3 - ordered

Figure 1: Illustration of the PARAFAC Inflexibility. Panel (a) shows a rank-1 tensor of the form B =
β1 ⊗ β2, for vectors β1, β2 ∈ {0, 1}100. Panel (b) shows a rank-3 matrix that is the sum of the three
rank-1 tensors like the one in panel (a). Panel (c) shows the same rank-3 matrix with rows and columns
reordered according to their mean entry.
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4 Soft tensor regression

Our approach proceeds by increasing the number of parameters in the regression model (2) and subse-

quently imposing sufficient structure to ensure model regularization and adaptability, simultaneously. It

borrows from the low-rank structure of the hard PARAFAC, but it is more flexible than the rigid form

in (4) and Figure 1, and can adaptively expand away from low-rank. We introduce tensors B
(d)
k of equal

dimensions to B and write

B =
D∑
d=1

B
(d)
1 ◦B(d)

2 ◦ . . . ◦B(d)
K . (5)

From (5), the coefficient with indices
˜
j = (j1j2 . . . jK) is written as the sum of D products of K parameters

B
˜
j =

D∑
d=1

β
(d)
1,

˜
j β

(d)
2,

˜
j . . . β

(d)
K,

˜
j , (6)

where β
(d)
k,

˜
j is the

˜
jth entry of the tensor B

(d)
k . For reasons that will become apparent later, the parameters

β
(d)
k,

˜
j are referred to as the jthk row-specific contributions along mode k to the coefficient B

˜
j . Note that

these row-specific contributions are allowed to depend on all indices
˜
j. For unrestricted B

(d)
k s, (5) does

not impose any restrictions on the coefficient tensor and any tensor B can be written in this form (for

example, take D = 1, B
(1)
1 = B and B

(1)
k = 1, for all k > 1).

The representation of the coefficient tensor in (5) might appear counter-productive at first since the

already high-dimensional problem of estimating the
∏K
k=1 pk parameters in B is translated to an even

higher-dimensional problem with DK
∏K
k=1 pk parameters in (5). However, as we will see, that is not a

problem if adequate structure is imposed on the tensors B
(d)
k . In fact, in Section 4.1 we show that the

hard PARAFAC can be written in the form (5) for carefully designed tensors B
(d)
k , which shows that

sufficient structure on the tensors B
(d)
k can lead to drastic dimensionality reduction. In Section 4.2, we

present our approach which is based on imposing structure on the tensors B
(d)
k in a careful manner such

that it simultaneously allows for low-dimensional and flexible estimation of B. We refer to the resulting

characterization as the soft PARAFAC of B.

4.1 Representation of the hard PARAFAC motivating the soft PARAFAC

As shown in (4), the hard PARAFAC row-specific contributions to each entry of the coefficient tensor

are fixed across the remaining indices. Hence, the hard PARAFAC can be written in the form (5) by

specifying tensors B
(d)
k of which two entries with the same jk index are equal:

[
B

(d)
k

]
j1j2...jk...jK

=
[
B

(d)
k

]
j′1...j

′
k−1jkj

′
k+1...j

′
K
,

This structure on the tensors B
(d)
k can be visualized as pk constant slices along mode k representing

the fixed row-specific contributions to all coefficient entries that involve it. This structure is illustrated

in Figure 2a for a 4-by-3 coefficient matrix. As an example, the contribution of row 2 along mode 1 is

constant (β1,(2,1) = β1,(2,2) = β1,(2,3)), and the same is true for the contribution of row 1 along mode 2

(β2,(1,1) = β2,(2,1) = β2,(3,1) = β2,(4,1)). The connection between (5) and the hard PARAFAC is the reason
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(a) Hard PARAFAC (b) Soft PARAFAC

Figure 2: Row-specific Contributions for the Hard and Soft PARAFAC. Left: For the hard PARAFAC,
the contributions are fixed across remaining indices. Right: For the soft PARAFAC, the contributions of
a row and column are entry specific and centered around an overall mean.

why we refer to β
(d)
k,

˜
j as row-specific contributions along mode k.

This demonstrates that the hard PARAFAC is one example of structure that can be imposed on

the B
(d)
k s in order to approximate B. However, the hard PARAFAC structure is quite strict, in that it

imposes equalities across the pk slices of B
(d)
k . Furthermore, since the hard PARAFAC can only capture

coefficient tensors of rank up to D, the hard PARAFAC’s rigid structure on the tensors B
(d)
k can severely

limit the flexibility of the model in capturing a true coefficient tensor B of higher rank.

4.2 The soft PARAFAC

The soft PARAFAC builds upon the hard PARAFAC’s low-rank structure, while providing additional

flexibility by introducing entry-specific variability in the row contributions. Instead of forcing all entries

of B
(d)
k with the same index jk to be equal to each other, the soft PARAFAC assumes that the entries of

B
(d)
k are centered around a jk-specific value, γ

(d)
k,jk

. Specifically, the soft PARAFAC specifies that, for all

k = 1, 2, . . . ,K, jk = 1, 2, . . . , pk, and d = 1, 2, . . . D,

β
(d)
k,

˜
j ∼ N(γ

(d)
k,jk

, σ2
kζ

(d)), (7)

for some γ
(d)
k,jk
∈ R, σ2

k, ζ
(d) > 0, where again

˜
j is the (j1j2 . . . jK) entry of the tensor. The connection

between the soft and hard PARAFAC is evident by noticing that the mean values γ depend only on

the index jk, and not on the remaining indices in
˜
j. In fact, the γ parameters resemble the jk-specific

entries in the hard PARAFAC, and they specify that Softer is based on an underlying γ-based rank-D

PARAFAC:

E[B
˜
j |Γ, S, Z] =

D∑
d=1

γ
(d)
1,j1

γ
(d)
2,j2

. . . γ
(d)
K,jK

,

where Γ, S, Z are the collections of the γ, σ, ζ parameters respectively. At the same time, (7) allows

variation within the mode−k slices of B
(d)
k by considering them as random effects centered around an

overall mean. This implies that row jk’s importance is allowed to be entry-specific leading to a softening
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in the hard PARAFAC structure. The soft PARAFAC is illustrated in Figure 2b. Here, the row-

contributions are centered around a common value (a value resembling the row-contribution according to

the hard PARAFAC) but are entry-specific. For example, β1,(2,1) is similar but not equal to β1,(2,2), β1,(2,3).

The entry-specific contributions deviate from the baseline according to a mode-specific parameter,

σ2
k, and a component-specific parameter, ζ(d). As we will discuss later, the inclusion of ζ(d) in the vari-

ance forces a larger amount of shrinkage on the entry-specific importance for components d that have

limited overall importance. For σ2
kζ

(d) = 0 the soft PARAFAC reverts back to the hard PARAFAC, with

row-specific contributions fixed at γ
(d)
k,jk

. However, larger values of σ2
kζ

(d) allow for a PARAFAC-based

approximation that deviates from its hard underlying structure and can be used to represent any true

tensor B. This is further illustrated in Figure 3 where γ1, γ2 ∈ {0, 1}64, and entry-specific contributions

are generated according to (7) with σ2
kζ

(d) ∈ {0, 0.05, 0.1, 0.2}. The soft PARAFAC resembles a struc-

tured matrix though higher values of the conditional variance lead to further deviations from a low-rank

structure.

The structure imposed by the soft PARAFAC has an interesting interpretation. The parameters

γ
(d)
k,jk

represent the baseline importance of row jk along the tensor’s kth mode. In contrast to the hard

PARAFAC, the soft PARAFAC allows for structured, graph-based deviations of a row’s importance,

by allowing row jk’s contribution to manifest differently based on the rows of the other modes that

participate with it in a coefficient entry,
˜
j \ {jk}, through β

(d)
k,

˜
j . This interpretation of the soft PARAFAC

structure is coherent in network settings like the one in our brain connectomics study, where we expect a

brain region to have some baseline value for its connections, but the magnitude of this importance might

slightly vary depending on the other region with which these connections are made. In this sense, defining

deviations from the hard PARAFAC through deviations in the row-specific contributions as specified in

(7) represents a tensor-based relaxation of the hard PARAFAC structure, which is itself tensor-based.

Figure 3: The Softening Variance. Soft PARAFAC matrices for increasing variance of the entry-specific
contributions. For variance equal to 0, the matrix corresponds to a rank-1 binary matrix generated as
γ1 ⊗ γ2 for γ1, γ2 ∈ {0, 1}64. The remaining matrices are generated according to the soft PARAFAC and
(7) for variance equal to 0.05, 0.1, and 0.2.

4.3 Bayesian inference in the soft tensor regression framework

Softer is placed within the Bayesian paradigm, which allows for straightforward uncertainty quantification.

We consider the structure on B
(d)
k expressed in (7) as part of the prior specification on the model

parameters of (2). Since γ
(d)
k,jk

are the key building blocks for the mean of B representing the underlying
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hard PARAFAC, we borrow from Guhaniyogi et al. [2017] and specify

γ
(d)
k,jk
∼ N(0, τγζ

(d)w
(d)
k,jk

)

τγ ∼ Γ(aτ , bτ )

w
(d)
k,jk
∼ Exp((λ(d)

k )2/2),

λ
(d)
k ∼ Γ(aλ, bλ)

ζ ∼ Dirichlet(α/D,α/D, . . . , α/D),

where ζ = (ζ(1), ζ(2), . . . , ζ(D)). Therefore, the parameters γ
(d)
k,jk

vary around 0 with variance that depends

on an overall parameter τγ , and component and row-specific parameters ζ(d) and w
(d)
k,jk

. As discussed in

Guhaniyogi et al. [2017], the row-specific components w
(d)
k,jk

lead to an adaptive Lasso type penalty on

γ
(d)
k,jk

[Armagan et al., 2013], and γ
(d)
k,jk
|τγ , ζ(d), λ

(d)
k follows a double exponential (Laplace) distribution

centered at 0 with scale τγζ
(d)/λ

(d)
k [Park and Casella, 2008].

The component-specific variance parameter ζ(d) is included in the prior of γ
(d)
k,jk

to encourage only a

subset of the D components to contribute substantially in the tensor’s low-rank PARAFAC approxima-

tion. This is because parameters γ
(d)
k,jk

for d with small ζ(d) are shrunk closer to zero. For that reason, we

also include ζ(d) in the conditional variance of β
(d)
k,

˜
j in (7) to ensure that penalization of the baseline row

contributions γ
(d)
k,jk

is accompanied with penalization of the row contributions β
(d)
k,

˜
j , and that a reduction

in the variance of γ
(d)
k,jk

is not overcompensated by an increase in the conditional variance of β
(d)
k,

˜
j .

We assume normal prior distributions on the intercept and scalar covariates’ coefficients (µ, δ) ∼
N(0,Σ0), and inverse gamma priors on the residual variance τ2 ∼ IG(aτ , bτ ) and the mode-specific

variance components σ2
k ∼ Γ(aσ, bσ). Specific choices for the hyperparameter values are discussed in

Section 4.4.

4.4 Choosing hyperparameters to achieve desirable characteristics of the induced prior

The prior distribution on the coefficient tensor B ∼ πB is induced by our prior specification on the

remaining parameters. The choice of hyperparameters can have a large effect on model performance, and

the use of diffuse, non-informative priors can perform poorly in some situations [Gelman et al., 2008].

For that reason and in order to assist default choices of hyperparameters leading to weakly informative

prior distributions with interpretable flexibility, we study the properties of the induced prior on B.

We do so in the following way. First, in Proposition 1 we provide expressions for the induced prior

expectation, variance and covariance for the entries in B. These expressions illustrate the importance of

certain hyperparameters in how the soft PARAFAC transitions away from its underlying, low-rank, hard

version. Then, in Proposition 2 we provide default values for hyperparameters for a standardized 2-mode

tensor predictor such that, a priori, Var(B
˜
j) = V ∗, and the proportion of the variance that arises due to

the proposed PARAFAC softening is equal to AV ∗. Studying the proportion of prior variability due to

the softening is motivated by Figure 3 in that hyperparameters should be chosen such that most of the

coefficient tensor’s prior variability arises from a low-rank structure. Therefore, Proposition 2 permits

us to choose hyperparameter values that directly specify the amount of a priori PARAFAC softening.

Finally, in Section 4.5 we study statistical properties of the induced prior on B, and we show full support
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over the class of coefficient tensors, irrespective of the base rank used in the soft PARAFAC, leading to

consistent posterior distributions. All proofs are in Appendix A.

Proposition 1. For
˜
j,

˜
j′ ∈ ⊗Kk=1{1, 2, . . . , pk} such that

˜
j 6=

˜
j′, we have that E(B

˜
j) = 0, Cov(B

˜
j ,B

˜
j′) =

0, and for aλ > 2,

Var(B
˜
j) =

{
D

K−1∏
r=0

α/D + r

α+ r

}[ K∑
l=0

ρl

(
K

l

){ 2b2λ
bτ (aλ − 1)(aλ − 2)

}l(aσ
bσ

)K−l]
,

where ρ0 = 1 and ρl = aτ (aτ + 1) . . . (aτ + l − 1) for l ≥ 1.

Remark 1. The hyperparameters of the softening variance, aσ, bσ. Remember that σ2
k is the parameter

driving the PARAFAC softening by allowing row-specific contributions to vary. From Proposition 1, it

is evident that the prior of σ2
k is only influential on the first two moments of B

˜
j through its mean, aσ

bσ
,

with higher prior expectation of σ2
k leading to higher prior variance of B

˜
j . Therefore, prior elicitation for

aσ, bσ could be decided based on the ratio aσ
bσ

.

Remark 2. Variance of coefficient entries for the hard PARAFAC. For E(σ2
k) = 0, the prior variance of

the coefficient tensor entries is equal to the prior variance of the hard PARAFAC,

Varhard(B
˜
j) =

{
D

K−1∏
r=0

α/D + r

α+ r

}ρK
bKτ

{ 2b2λ
(aλ − 1)(aλ − 2)

}K
.

Comparing the variance ofB
˜
j based on the soft and hard PARAFAC allows us to quantify the amount

of additional flexibility that is provided by the PARAFAC softening, expressed as

AV =
Var(B

˜
j)−Varhard(B

˜
j)

Var(B
˜
j)

∈ [0, 1).

We refer to this quantity as the additional variance. Motivated by Figure 3, we would like to ensure that

chosen hyperparameters assign more prior weight to coefficient matrices that resemble low-rank factor-

izations. At the same time, choice of hyperparameters should ensure a sufficiently but not overly large

prior variance of the regression coefficients. Proposition 2 provides conditions on the hyperparameters for

matrix predictors (K = 2), for which Var(B
˜
j) = V ∗, and AV = AV ∗, for values V ∗ > 0 and AV ∗ ∈ [0, 1).

For a tensor predictor with K > 2, conditions on the hyperparameters that ensure a given target variance

and target additional variance can be acquired by following similar steps.

Proposition 2. For a matrix predictor, target variance V ∗ ∈ (0,∞), target additional variance AV ∗ ∈
[0, 1), and hyperparameters satisfying aλ > 2,

2b2λ
(aλ − 1)(aλ − 2)

=
bτ
aτ

√
V ∗(1−AV ∗)aτ
C(aτ + 1)

(8)

and

aσ
bσ

=

√
V ∗(1−AV ∗)aτ
C(aτ + 1)

{√
1− aτ + 1

aτ

{
1−

(
1−AV ∗)−1

}
− 1

}
, (9)
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where C = (α/D + 1)/(α+ 1), we have that a priori Var(B
˜
j) = V ∗, and AV = AV ∗.

Proposition 2 is used in our simulations and study of brain connectomics to choose hyperparameters

such that, a priori, Var(B
˜
j) = 1 and AV = 10%, assuming a tensor predictor with standardized entries.

Specifically, we set aτ = 3, aσ = 0.5 and calculate the values of bτ , bσ for which V ∗ = 1 and AV ∗ = 10%.

These values correspond to bτ ≈ 6.3
√
C and bσ ≈ 8.5

√
C. We specify ασ = 0.5 < 1 to encourage, a priori,

smaller values of σ2
k. Throughout, we use α = 1 and D = 3. For the hyperparameters controlling the

underlying hard PARAFAC, we specify aλ = 3 and bλ = 2K
√
aλ. Lastly, assuming centered and scaled

outcome and scalar covariates, we specify (µ, δT )T ∼ N(0, Ip+1), and residual variance τ2 ∼ IG(2, 0.35)

which specifies P (τ2 < 1) ≈ 0.99.

Remark 3. Interplay between variance hyperparameters. From (9), it is evident that the prior mean

of σ2
k, the variance component in the PARAFAC softening, depends on the target variance and the

proportion of that variance that is attributable to the PARAFAC softening, and does not depend on

the remaining hyperparameters (considering that aτ/(aτ + 1) ≈ 1). Furthermore, note that (8) only

includes hyperparameters which drive the underlying hard PARAFAC, and it depends on V ∗ and AV ∗

only through V ∗(1 − AV ∗), which expresses the prior variability in B that is not attributed to the

PARAFAC softening. Therefore, in Softer there is a clear and desirable separation between the hard and

soft PARAFAC variance hyperparameters. Lastly, since
2b2λ

(aλ−1)(aλ−2) in (8) is the prior mean of w
(d)
k,jk

,

these results illustrate the interplay between the two components in the variance V ∗(1 − AV ∗) of the

underlying hard PARAFAC structure: when the prior mean of τγ increases, the prior mean of wk,jk has

to decrease in order to maintain the target variance due to the underlying PARAFAC at V ∗(1−AV ∗).

4.5 Posterior consistency and Softer’s robustness to the underlying rank

In this section, we focus on the choice of the rank D for Softer. We discuss that results based on Softer

are likely robust to small changes in the choice of the underlying rank. To support this claim, we first

provide two intuition-based arguments, and then a theoretical one. Finally, Softer’s robustness to the

choice of D is empirically illustrated in simulated examples in §5.

When employing the hard PARAFAC, Guhaniyogi et al. [2017] recommended using D = 10 for a

predictor of dimension 64 × 64. The reason is that the prior on ζ permits some amount of flexibility in

the number of components that contribute to the coefficient matrix approximation in that (a) if the matrix

can be well-approximated by a rank lower than D, the prior leads to a reduction in the approximation’s

effective rank, and (b) if all D components are useful in estimation, then all of them acquire sufficient

weight. Since Softer employs the same prior on ζ, it also allows for sparsity in the effective components

in the underlying hard PARAFAC, in that if the true coefficient tensor is of rank lower than D, higher

order components will be heavily shrunk towards zero, and softening will be minimal. This intuition

will be further supported by simulations in §5.1 where we illustrate that Softer reverts back to the hard

PARAFAC when the underlying low-rank structure is true.

However, if the true coefficient tensor is not of low rank, Softer can expand away from a low-rank

structure in two ways: it can use additional components in the underlying hard PARAFAC, or it can soften

away from the rigid underlying low-rank structure. The deviations based on the PARAFAC softening

can effectively capture components corresponding to singular values of any magnitude. In Figure 4
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we illustrate the range of singular values that would be accommodated when expanding away from a

rank-D1 hard PARAFAC approximation by (1) increasing the hard PARAFAC rank, and (2) softening

the PARAFAC. Increasing the hard PARAFAC rank would include components corresponding to some

small singular values, but softening the PARAFAC accommodates deviations from the underlying D1-

rank structure across all singular values. Since Softer based on an underlying D-rank can capture these

arbitrary deviations from a D-rank structure, increasing the rank D in Softer’s underlying PARAFAC is

not expected to drastically alter the results, making Softer robust to the choice of rank D. This intuition

is empirically illustrated in §5.2.

Softer’s robustness to the choice of underlying rank D and its ability to capture any true coefficient

tensor is also evident in the following theoretical results. In Proposition 3 we show that the prior on B,

πB, has full L∞ prior support in that it assigns positive prior weight to any ε-sized neighborhood of any

true coefficient tensor B0. This indicates that, even if the value of D is lower than the coefficient tensor’s

true rank, Softer assigns positive prior weight to a neighborhood of the true tensor. Full prior support

is a key element for establishing sufficient flexibility of a Bayesian procedure. In turn, the posterior

distribution of the coefficient tensor is consistent, irrespective of the true coefficient tensor’s rank, or the

rank used in Softer’s underlying PARAFAC.

Proposition 3 (Full prior support). Let ε > 0. Then, πB
(
B∞ε
(
B0
))

> 0, where B∞ε
(
B0
)

= {B :

max
˜
j |B0

˜
j −B

˜
j | < ε}.

We assume that the true data generating model is (2) with true coefficient tensor B0, and that the tensor

predictor X has bounded entries. Since our interest is in estimating B0, we assume that τ2 = 1, µ = 0

and δ = 0 are known. Then, we have the following.

Proposition 4. The posterior distribution of B is weakly consistent for B0.

These results indicate that softening the PARAFAC allows us to capture any truth. Since they hold

irrespective of the choice of the underlying rank, they also indicate that Softer is robust to the choice of

rank D, at least asymptotically.

Figure 4: Hypothetical histogram of singular values of a coefficient matrix. A rank D1 PARAFAC
approximation would incorporate components corresponding to the D1 largest singular values. Increasing
the rank to D2 allows for D2−D1 additional components, whereas Softer allows for the incorporation of
deviations corresponding to any singular value.
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4.6 Approximating the posterior distribution of the coefficient tensor

Since there is no closed-form for the posterior distribution of B, we approximate it using Markov chain

Monte Carlo (MCMC). An MCMC scheme where most parameters are updated using Gibbs sampling

is shown in Appendix C. We found this approach to be sufficiently efficient when the sample size is

larger or of similar order to the number of parameters. However, in very high-dimensional settings

where p� n, mixing and convergence was slow under reasonable time constraints. For that reason, and

in order to provide a sampling approach that performs well across n, p situations, we instead rely on

Hamiltonian Monte Carlo (HMC) implemented in Stan [Carpenter et al., 2017] and on the R interface

[Stan Development Team, 2018] to acquire samples from the posterior distribution. HMC is designed to

improve mixing relative to Gibbs sampling by employing simultaneous updates, and relying on gradients

calculated with automatic differentiation to obtain efficient proposals. Using Stan, we employ the No-

U-Turn sampler (NUTS) algorithm [Hoffman and Gelman, 2014] which automatically tunes the HMC

parameters to achieve a target acceptance rate (the default step size adaptation parameters were used).

If MCMC convergence is slow, one could increase the NUTS parameter δ in RStan from 0.8, which is the

default, to a value closer to 1.

MCMC convergence was assessed based on visual inspection of traceplots across chains with different

starting values and the potential scale reduction factor [Gelman and Rubin, 1992] for the regression

coefficients µ, δ,B and the residual variance τ2. Note that the remaining parameters are not individually

identifiable as the underlying PARAFAC parameters are themselves non-identifiable, and therefore the

corresponding softening parameters are also non-identifiable. In simulations, we considered a model

that restricts the underlying PARAFAC parameters to make them identifiable (using the constraints

discussed in Section 2.3 of Guhaniyogi et al. [2017]). We found that the original and constrained models

had identical estimation performance, but that the MCMC for the unconstrained model including non-

identifiable parameters required a smaller number of iterations to converge than the constrained model

that uses the identifiable underlying PARAFAC.

5 Simulations

To illustrate the performance of Softer and compare it against alternatives, we simulated data under

various scenarios. In one set of simulations (Section 5.1), we considered a tensor predictor of dimension

32× 32, corresponding coefficient tensors ranging from close to low-rank to full-rank, and with different

degrees of sparsity, and sample size equal to 400. In another set of simulations (Section 5.2), we considered

a tensor predictor of dimension 20× 20 and corresponding coefficient tensor of rank 3, 5, 7, 10 and 20 in

order to investigate the performance of Softer relative to the hard PARAFAC for a true coefficient tensor

that increasingly deviates from low rank form, and various choices of the algorithmic rank D. The sample

size in this situation was 200. In all scenarios, the predictor’s entries were drawn independently from

a N(0, 1) distribution, and the outcome was generated from a model in the form (2) with true residual

variance τ2 = 0.5.

We considered the following methods: (a) Softer, (b) the Bayesian hard PARAFAC approach of

Guhaniyogi et al. [2017], and (c) estimating the coefficient tensor by vectorizing the predictor and per-

forming Lasso. We considered these two competing approaches because they represent the two extremes of
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how much prioritization is given to the predictor’s array structure (the hard PARAFAC directly depends

on it, the Lasso completely ignores it), whereas Softer is designed to exploit the predictor’s structure while

allowing deviations from it. We also considered (d) the Bayesian tensor regression approach of Spencer

[2020] which is based on the Tucker decomposition, a generalization of the PARAFAC decomposition.

Methods were evaluated in terms of how well they estimated the true coefficient tensor B by calculat-

ing (1) the entry-specific bias and mean squared error of the posterior mean (for the Bayesian approaches)

and the penalized likelihood estimate (for the Lasso), and (2) the frequentist coverage of the 95% credible

intervals. In order to evaluate the methods’ performance in accurately identifying important entries (en-

tries with non-zero coefficients), we calculated methods’ (3a) sensitivity (percentage of important entries

that were identified), (3b) specificity (percentage of non-important entries that were correctly deemed

non-important), (3c) false positive rate (percentage of identified entries that are truly not important),

and (3d) false negative rates (percentage of non-identified entries that are important). For the Bayesian

methods, an entry was flagged as important if its corresponding 95% credible interval did not overlap with

zero. Hierarchical Bayesian models have been shown to automatically perform adjustment for multiple

testing error [Scott and Berger, 2010, Müller et al., 2006]. Confidence intervals and entry selection for the

Lasso were not considered. We also evaluated the models’ predictive performance by estimating (4) the

predictive mean squared error defined as the mean of the squared difference between the true outcome

and the predictive mean over 1,000 new data points. Lastly, (5) we compared the hard PARAFAC and

Softer in terms of their computational time, for various ranks D.

Additional simulations are shown in Appendix D and are summarized below, where applicable.

5.1 Simulation results for tensor predictor of dimensions 32×32

The scenarios we considered represent settings of varying complexity and sparsity. The first column of

Figure 5 shows the true coefficient tensors (squares, feet, dog, diagonal). The squares coefficient matrix is

used as a scenario where the true coefficient matrix is rectangular, but not low rank, and not sparse. The

next two scenarios represent situations where the underlying structure is not of low-rank form, but could

be potentially approximated by a low rank matrix up to a certain degree, hence representing scenarios

somewhat favorable to the hard PARAFAC. In the last case, the diagonal coefficient matrix is used to

represent a sparse coefficient matrix of full-rank without a network-structure, a scenario that is favorable

for the Lasso, but is expected to be difficult for the hard PARAFAC. Therefore, the scenarios we consider

here represent a wide range of rank and sparsity specifications, and we investigate Softer’s ability to use

a low rank structure when such structure is useful (feet, dog), and expand away from it when it is not

(squares, diagonal). Even though none of these coefficient tensors is low-rank, we considered a low-rank

example in the Appendix, and we discuss it briefly below.

The remaining columns of Figure 5 show the average posterior mean or penalized estimate across

simulated data sets. Results from Softer and the hard PARAFAC correspond to D = 3, though the

methods are also considered with rank D = 7 (the results are shown in the Appendix and are discussed

below). In the squares, feet and dog scenarios, the hard PARAFAC performs decently in providing a

low-rank approximation to the true coefficient matrix. However, certain coefficient entries are estimated

poorly to fit its rectangular structure. This is most evident in the squares scenario where the non-zero

coefficients are obscured in order to fit in a low-rank form. Results for the approach based on the Tucker
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Figure 5: True coefficient matrix and average across simulated data sets of the coefficient matrix posterior
mean for Softer, hard PARAFAC and Tucker regression, and the penalized estimator for the Lasso.

decomposition are worse, with estimated coefficient matrices that deviate from the truth more. In the

diagonal scenario, the hard PARAFAC and Tucker approaches totally miss the diagonal structure and

estimate (on average) a coefficient matrix that is very close to zero. In contrast, the Lasso performs

best in the sparse, diagonal scenario and identifies on average the correct coefficient matrix structure.

However, in the squares, dog and feet settings, it underestimates the coefficient matrix since it is based on

assumed sparsity which is not true, and does not borrow any information across coefficient matrix entries.

In all situations, Softer closely identifies the structure of the underlying coefficient matrix, providing

a compromise between tensor-based and unstructured estimation, and having small biases across all

simulated scenarios (average bias also reported in Table 1). In the squares, feet and dog scenarios, Softer

bases estimation on the low-rank structure of the underlying hard PARAFAC, but it expands from it to

better describe the true coefficient matrix’s details. At the same time, Softer also performs well in the

diagonal scenario, where the true coefficient tensor is full-rank. Therefore, the strength of Softer is found

in its ability to use the low-rank structure of the PARAFAC when necessary, and diverge from it when

needed.
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Softer PARAFAC Tucker Lasso
squares Truly zero bias 0.003 0.005 0.013 0.012

rMSE 0.033 0.05 0.05 0.143
coverage 99.7% 98.3% 99.8% –

Truly non-zero bias 0.084 0.106 0.136 0.501
rMSE 0.11 0.148 0.166 0.601
coverage 80.1% 68.4% 90.7% –

Prediction MSE 5.05 8.99 12.16 111.8
feet Truly zero bias 0.037 0.046 0.057 0.016

rMSE 0.092 0.109 0.102 0.198
coverage 96.9% 94.2% 95.5% –

Truly non-zero bias 0.116 0.138 0.175 0.43
rMSE 0.184 0.21 0.226 0.558
coverage 89.2% 80% 84.8% –

Prediction MSE 31.9 41.8 50.6 264.6
dog Truly zero bias 0.047 0.059 0.083 0.029

rMSE 0.111 0.129 0.129 0.151
coverage 98.0% 92.8% 95.5% –

Truly non-zero bias 0.129 0.159 0.214 0.350
rMSE 0.205 0.230 0.261 0.435
coverage 88.2% 76.9% 78.5% –

Prediction MSE 35.0 45.4 61.7 138.4
diagonal Truly zero bias 0.002 0.004 0.002 <0.001

rMSE 0.02 0.051 0.024 0.009
coverage 100% 100% 100% –

Truly non-zero bias 0.111 0.899 0.954 0.07
rMSE 0.126 0.906 0.955 0.084
coverage 94.7% 3% 0.8% –

Prediction MSE 1.41 29.7 30.6 0.81

Table 1: Simulation Results. Average bias, root mean squared error, frequentist coverage of 95% credible
intervals among truly zero and truly non-zero coefficient entries, and predictive mean squared error for
Softer (with D = 3), the hard PARAFAC (with D = 3), Tucker regression, and Lasso for the simulation
scenario with tensor predictor of dimensions 32 × 32 and sample size n = 400. Bold text is used for
the approach performing best in each scenario and for each metric. If no entry is bold, no conclusive
argument can be made.

In Table 1, we report the methods’ bias and root mean squared error (rMSE), predictive mean squared

error, and frequentist coverage of the 95% credible intervals. Conclusions remain unchanged, with Softer

performing similarly to the hard PARAFAC when its underlying structure is close to true, and has the

ability to diverge from it and estimate a coefficient tensor that is not low-rank in other scenarios. This is

evident by an average coverage of 95% posterior credible intervals that is 94.7% in the diagonal scenario.

In terms of their predictive ability, the pattern observed for the bias and mean squared error persists,

with Softer having the smallest mean squared predictive error in the squares, feet and dog scenarios, and

the Lasso for the diagonal scenario, followed closely by Softer. Across all scenarios, the approach based

on the Tucker decomposition performs worst among the Bayesian methods in terms of both estimation

and predictive accuracy.

Table 2 shows the performance of Softer, the hard PARAFAC, and Tucker regression approaches

17



for identifying the important entries of the tensor predictor (entries with non-zero coefficients). Perfect

performance would imply specificity and sensitivity equal to 100, and false positive and negative rates

(FPR, FNR) equal to 0. The methods perform comparably in terms of specificity, sensitivity, and FNR,

except for the diagonal scenario where the sensitivity of the hard PARAFAC and Tucker approaches is

dramatically lower. However, the big difference is in the FPR. Even though Softer’s FPR is at times higher

than 5%, it remains at much lower levels than the hard PARAFAC and Tucker approaches for which FPR

is on average over 10% in the dog and approximately 30% in the diagonal scenario. In Appendix D.1

we investigate the cases where Softer and hard PARAFAC return contradicting results related to an

entry’s importance. We illustrate that, when Softer disagrees with PARAFAC and identifies an entry

as significant, the entry’s true coefficient varies uniformly over the range of coefficients. On the other

hand, when PARAFAC identifies entries as important and Softer does not, it is most likely for entries

with small (or zero) coefficient values, in an effort to fit the estimated coefficient matrix into a low-rank

form. These results indicate that identifying important entries based on the hard PARAFAC could lead

to false discovery rates much higher than the desired one, whereas Softer alleviates this issue.

Appendix D shows additional simulation results. Appendix D.2 shows results for alternative coefficient

matrices, including a coefficient matrix of rank 3, a scenario favorable to the hard PARAFAC. There, we

see that Softer collapses to the underlying hard PARAFAC structure when such a structure is true, and

does not use its allowed deviations. These simulation results are in agreement with our first intuition-

based argument of Section 4.5 with regards to the choice of rank D for Softer. Appendix D.3 shows results

for a subset of the coefficient matrices and for sample size n = 200. Simulations with a smaller n to p

ratio show that Softer performs comparably to the hard PARAFAC for the dog and feet scenarios and

has substantially smaller bias and rMSE for the truly non-zero coefficients in the diagonal scenario. The

Sensitivity Specificity FPR FNR

squares Softer 100 99.7 0.9 (0, 2.5) 0
PARAFAC 100 98.3 4.7 (1.2, 8.7) 0
Tucker 100 99.9 0.3 (0, 0.4) 0

feet Softer 64.5 96.9 2.9 (1.7, 4.1) 36.3
PARAFAC 68.4 94.1 5.2 (3.3, 7.1) 34.3
Tucker 63.6 95.5 4.4 (3.3, 5.5) 37.2

dog∗∗ Softer 52.9 96.7 5.2 (2.7, 8.1) 34.7
PARAFAC 63.1 90.1 12.4 (8.4, 15.9) 30.9
Tucker 46.3 93.1 11.5 (5.2, 17.6) 38.6

diagonal Softer 100 100 0 (0, 0) 0
PARAFAC 3 100 28.8 (0, 70) 3
Tucker < 1 100 33.3 (10, 50) 3.1

Table 2: Methods’ performance in identifying important entries. For sensitivity, specificity and false
negative rate (FNR), results are shown as average across simulated data sets (×100), and for false
positive rate∗ (FPR) as average (10th, 90th percentile) (×100).

∗The average FPR is taken over simulated data sets for which at least one entry was identified as important.
∗∗Most coefficients in the dog simulation were non-zero. Results are presented considering coefficients smaller than 0.05 as

effectively zero.
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most notable conclusion is that Softer results are closer to the hard PARAFAC results when the sample

size is small. This indicates that the data inform the amount of PARAFAC softening which depends on

the sample size. Finally, Appendix D.4 shows results for Softer and the hard PARAFAC when D = 7.

Even though the hard PARAFAC shows substantial improvements using the higher rank, Softer performs

almost identically for rank 3 or 7, illustrating its robustness to the choice of the underlying rank. This

last result is further investigated in Section 5.2.

5.2 Simulation results for coefficient tensor of increasing rank

We evaluated the performance of the hard and soft PARAFAC tensor regression with various values of the

algorithmic rank D and the coefficient tensor’s true rank. We considered tensor predictor of dimension

20×20, rank of the true coefficient matrix equal to 3, 5, 7, 10 and 20, and we evaluated the hard PARAFAC

and Softer with D ∈ {1, 3, 5, 7, 10}. For every value of the true rank, we generated 100 data sets.

In Figure 6, we show the average across entries of the coefficient matrix of the absolute bias and mean

squared error, and the predictive mean squared error. For illustrative simplicity, we include a subset of

the results: Softer with D = 3, and the hard PARAFAC with D = 3 and D = 5, though the complete

results are discussed below. When the true rank of the coefficient matrix is 3, the three approaches

perform similarly. This indicates that both the hard PARAFAC with D = 5 and Softer are able to

convert back to low ranks when this is true. For true rank equal to 5 or 7, the hard PARAFAC with

D = 5 slightly outperforms Softer. However, for D > 7, Softer based on a rank-3 underlying structure

performs best both in estimation and in prediction. These results indicate that, in realistic situations

where the coefficient tensor is not of low-rank form, Softer with a low rank has the ability to capture the

coefficient tensor’s complex structure more accurately than the hard PARAFAC.

In Appendix D.5, we show the performance of Softer and the hard PARAFAC across all ranks D con-

sidered, D ∈ {1, 3, 5, 7, 10}. The conclusions about the methods’ relative performance remain unchanged:

even though Softer and the hard PARAFAC perform similarly for coefficient tensors with small true rank,

Softer with D > 1 outperforms the hard PARAFAC in terms of both estimation and prediction when
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Figure 6: Average absolute bias, estimation mean squared error and predictive mean squared error (y-
axis) for tensor predictor of dimensions 20 × 20 and true coefficient matrix of increasing rank (x-axis).
Results are shown for the hard PARAFAC with D = 3 (red) and D = 5 (green), and Softer with D = 3
(blue).
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the coefficient tensor is of high rank. These results illustrate another important point. The performance

of the hard PARAFAC depends heavily on the choice of rank D. In contrast, Softer’s performance is

strikingly similar across all values of D, illustrating again that the results from Softer are robust to the

choice of D, in agreement with the second intuition-based argument on Softer’s robustness in Section 4.5.

Finally, Table 3 shows the average time across simulated data sets for 15,000 MCMC iterations for

the two methods. As expected, the computational time for both approaches increases as the value of D

increases, though the true rank of the coefficient tensor seems to not play a role. Here, we see that Softer

generally requires two to three times as much time as the hard PARAFAC for the same value of D, which

might seem computationally prohibitive at first. However, our results in Figure 6 and Appendix D.5

show that Softer requires a smaller value of D in order to perform similarly to or better than the hard

PARAFAC in terms of both estimation and prediction. Therefore, Softer’s computational burden can be

drastically alleviated by fitting the method for a value of D which is substantially lower than the value of

D for the hard PARAFAC. In §7, we also discuss frequentist counterparts to our model that might also

reduce the computational load.

True rank of coefficient tensor
3 5 7 10 20

Softer D = 1 28 29 30 37 39
D = 3 166 110 101 104 117
D = 5 181 149 158 159 152
D = 7 212 189 205 216 220
D = 10 275 236 255 288 259

Hard PARAFAC D = 1 16 16 15 15 15
D = 3 30 39 46 35 36
D = 5 69 54 57 53 56
D = 7 100 90 82 72 76
D = 10 104 117 108 104 102

Table 3: Computational time (in minutes) for Softer and the hard PARAFAC.

6 Estimating the relationship between brain connectomics and human traits

Data from the Human Connectome Project (HCP) contain information on about 1,200 healthy young

adults including age, gender, various brain imaging data, and a collection of measures assessing cognition,

personality, substance intake and so on (referred to as traits here). We are interested in studying the

brain structural connectome, referring to anatomical connections of brain regions via white matter fibers

tracts. The white matter fiber tracts can be indirectly inferred from diffusion MRI data. Two brain

regions are considered connected if there is at least one fiber tract running between them. However, there

can be thousands of fiber tracts connecting a pair of regions. Properties of the white matter tracts in a

connection, such as number of tracts, and patterns of entering the regions, might be informative about

an individual’s traits. Using data from the HCP and based on the soft tensor regression framework, we

investigate the relationship between different connectome descriptors and human traits.

Structural connectivity data were extracted using state-of-the-art pipelines in Zhang et al. [2018]. In

total, about 20 connectome descriptors (adjacency matrices) describing different aspects of white matter
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fiber tract connections were generated (see Zhang et al. [2018] for more information on the extracted

descriptors). Each adjacency matrix has a dimension of 68× 68, representing R = 68 regions’ connection

pattern. The 68 regions were defined using the Desikan-Killiany atlas [Desikan et al., 2006]. Of the 20

extracted connectome features, we consider two in this analysis: (a) count, describing the number of

streamlines, and (b) connected surface area (CSA), describing the area covered by small circles at the

interactions of fiber tracts and brain regions, since they are the most predictive features according to

results in Zhang et al. [2019].

We examine the relationship between these descriptors of structural brain connections and 15 traits,

covering domains such as cognition, motor, substance intake, psychiatric and life function, emotion,

personality and health. The full list of outcomes we analyze is presented in Table E.1 and includes both

binary and continuous traits. For binary traits, a logistic link function is assumed.

6.1 Adapting Softer for (semi-)symmetric brain connectomics analysis

The nature of the brain connectivity data implies that the R×R-dimensional tensor predictor including

a specific connectivity feature among R regions of interest (ROIs) is symmetric and the diagonal elements

can be ignored since self-loops are not considered. Further, considering p features simultaneously would

lead to an R×R×p tensor predictor which is semi-symmetric (symmetric along its first two modes). The

(semi-)symmetry encountered in the predictor allows us to slightly modify Softer and reduce the number

of parameters by imposing that the estimated coefficient matrix B is also (semi-)symmetric. We provide

the technical details for the (semi-)symmetric Softer in Appendix F.

6.2 Analyses of the brain connectomics data

For the purpose of this paper, we investigate the relationship between features of brain connections and

human traits by regressing each outcome on each of the two predictors (count and CSA) separately. Even

though analyzing the relationship between the traits and multiple features simultaneously is possible, we

avoid doing so here for simplicity. We analyze the data employing the following methods: (1) symmetric

Softer with D = 6, (2) the hard PARAFAC approach of Guhaniyogi et al. [2017] which does not impose

symmetry of the coefficient tensor with D = 10, and (3) Lasso on the vectorized lower triangular part of

the tensor predictor. Since publicly available code for non-continuous outcomes is not available for the

hard PARAFAC approach, we only consider it when predicting continuous outcomes.

We compare methods relative to their predictive performance. For each approach, we estimate the

out-of-sample prediction error by performing 15-fold cross validation, fitting the method on 90% of the

data and predicting the outcome on the remaining 10%. In the case of Softer and the hard PARAFAC

we also investigate the presence of specific brain connections that are important in predicting any of the

outcomes by checking whether their coefficients’ 95% posterior credible intervals include zero. Additional

results based on Softer for a different choice of baseline rank or when symmetry is ignored are included

in Appendix E and are summarized below.

6.3 Using features of brain connections for predicting human traits

For continuous outcomes, methods’ predictive performance was evaluated by calculating the percentage of

the marginal variance explained by the model defined as 1− (CV MSE)/(marginal variance). For binary
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outcomes, we used the model’s estimated linear predictor to estimate the optimal cutoff for classification

based on Youden’s index [Youden, 1950] and calculated the average percentage of correctly classified

observations in the held-out data.

Figure 7 shows these results for the three approaches considered, and for each feature separately.

For most outcomes, one of the two features appeared to be most predictive of the outcome across ap-

proaches. For example, the count of streamlines was more predictive than CSA of an individual’s anger

level (AngHostil), independent of the modeling approach used. By examining the methods’ predictive

performance, it is evident that features of brain connectomics are, in some cases, highly predictive of

outcomes. Specifically, over 30% of the variance in an individual’s strength level, and over 10% of the

variance in endurance, reading comprehension, and picture vocabulary ability can be explained by the

count or CSA of streamlines of their brain connections.

Not one approach outperformed the others in prediction across all features and outcomes. However,
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approaches that accommodate the network structure perform better than Lasso in most situations. One

example is Softer’s performance relative to Lasso when predicting individuals’ previous depressive episode

(Depressive Ep). Here, Lasso performs worse than the random classifier, whereas Softer has over 90%

accuracy. Even when the number of observations is less than 300 (difficulty quitting tobacco, TB DSM

Difficulty Quitting), Softer performs only slightly worse than Lasso. For continuous outcomes, Softer

and hard PARAFAC perform comparably. As we saw in the simulations in §5 and in Appendix D.3,

the similar predictive performance of Softer and hard PARAFAC could be due to the limited sample size

that forces Softer to heavily rely on the underlying low-rank structure for estimation, essentially reverting

back to the hard PARAFAC.

The low signal in predicting some outcomes implies low power in identifying pairs of brain regions

whose connection’s features are important. In fact, 95% credible intervals for all coefficients using the

hard PARAFAC overlapped with zero. In contrast, Softer identified seven important connections: five

of them were for predicting whether an individual has had a depressive episode (three using count of

streamlines as the predictor, and two using CSA), one in predicting an individual’s strength, and one in

predicting the variable short penn line orientation (VSPLOT). The identified connections are listed in

Table 4 and agree with the literature in neuroscience. All identified connections in predicting a depressive

episode involve the parahippocampal, which is the posterior limit of the amygdala and hippocampus and is

located in the temporal lobe, and ROIs located in the frontal lobe (paracentral, lateral orbitofrontal, pars

orbitalis). Dysfunction of the parahippocampal (as well as the amygdala and hippocampus) has been

identified in various studies as an important factor in major depression and emotion-related memory

observed in depression [Mayberg, 2003, Seminowicz et al., 2004, LaBar and Cabeza, 2006, Zeng et al.,

2012]. Further, dysregulation of the pathways between the frontal and temporal lobes has been identified

as predictive of depression [Mayberg, 1994, Steingard et al., 2002], even when explicitly focusing on the

cortical regions Softer identified as important [Liao et al., 2013]. Two of the three connections were

identified as important irrespective of the tensor predictor used (count or CSA). Even though these

predictors are related, they describe different aspects of brain connectivity. Therefore, Softer identified

the same connections as important based on two separate measures of brain connectivity. The identified

connection in predicting strength involves the precuneus and superior parietal regions in the parietal lobe.

Precuneus’ connectivity has been associated with a variety of human functions, including motor-related

traits [Cavanna and Trimble, 2006, Wenderoth et al., 2005, Simon et al., 2002], and the parietal lobe in

general is believed to control humans’ motor system [Fogassi and Luppino, 2005].

Appendix E.2 includes results from the symmetric Softer using a smaller rank (D = 3), and from

Outcome Feature ROI 1 ROI 2

Depressive Count (lh) Parahippocampal (rh) Lateral Orbitofrontal
Episode (lh) Paracentral

(lh) Pars Orbitalis

CSA (rh) Lateral Orbitofrontal
(lh) Paracentral

Strength Count (rh) Precuneus (rh) Superior Parietal

VSPLOT CSA (lh) Banks of Superior Temporal Sulcus (lh) Rostral Anterior Cingulate

Table 4: Brain connections with important features in predicting human traits.

23



Softer using the same rank as the results in this section (D = 6) but ignoring the known symmetry

of the predictor. All three versions of Softer perform similarly in terms of prediction, with potentially

slightly lower predictive power for the symmetric Softer with rank 3. The entries identified as important

by Softer with D = 3 are similar, though not identical to the ones in Table 4. When symmetry is

not accounted for, Softer does not identify any important connections. Finally, in Appendix E.3 we

investigate the reproducibility of identified connections across random subsamples including 90% of the

observations. We find that for strength, when connections are identified in the subsample, they generally

include the ones in Table 4. Finally, when predicting whether an individual has has a depressive episode,

any of the connections identified across any subsample and for either predictor involved at least one

of Parahippocampal (in the left hemisphere) or Lateral Orbitofrontal (in the right hemisphere) ROIs,

implying that the importance of these two regions is strikingly reproducible.

7 Discussion

In this paper, we considered modeling a scalar outcome as a function of a tensor predictor within a

regression framework. Estimation of regression models in high dimensions is generally based on some

type of assumed sparsity of the true underlying model: sparsity directly on covariates, or “latent sparsity”

by assuming a low-dimensional structure. When the assumed sparsity is not true, the model’s predictive

ability and estimation can suffer. Our approach is positioned within the class of latent sparsity, since it

exploits a low-dimensional underlying structure. We focused on adequately relaxing the assumed structure

by softening the low-dimensional PARAFAC approximation and allowing for interpretable deviations

of row-specific contributions. We show that softening the PARAFAC leads to improved estimation of

coefficient tensors, better performance in identifying important entries, consistent estimation irrespective

of the underlying rank used for estimation, and more accurate predictions. The approach is applicable to

both continuous and binary outcomes, and was adapted to (semi-)symmetric tensor predictors, which is

common in settings where the predictor is measured on a network of nodes. Softer was used to study the

relationship between brain connectomics and human traits, and identified several important connections

in predicting depression.

Combining the two types of assumed sparsity for low-rank and sparse matrix estimation has received

some attention in the literature, especially in machine learning with matrix data. Candès et al. [2011],

Waters et al. [2011] and Zhou and Tao [2011] decomposed matrices as the sum of a low-rank and a

sparse component. Zhang et al. [2016] employed such decomposition in anomaly detection by studying

the Mahalanobis distance between the observed data and the low-rank component. Richard et al. [2012]

developed a penalization-based approach to estimating matrices that are simultaneously sparse and low-

rank by adopting one type of penalty for sparsity and one for rank. All these approaches have been

formulated as optimization problems and algorithms are generally based on iterative procedures.

Within a Bayesian regression framework, Guha and Rodriguez [2018] combined the two types of

sparsity and proposed a network-based spike and slab prior on the nodes’ importance. Under that model,

a node is either active or inactive, and active nodes are expected to contribute to the outcome based on

a low-rank coefficient tensor. In that sense, this approach has important commonalities to estimating a

coefficient tensor that is simultaneously sparse and low-rank. Even though we find that approach to be

promising, we find that node selection in itself can be too restrictive in some settings, and future work
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could incorporate hierarchical or parallel node and entry selection.

Softer has similarities but also differences from the methods discussed above. On one hand, Softer

provides a relaxation of an assumed low-rank form. However, this relaxation (or softening) is not sparse in

any way, and every element of the tensor is allowed to deviate from the low-rank structure. We find that

an exciting line of research would combine low-rank and sparse approaches while allowing for sufficient

flexibility to deviate from both of them. Important questions remain on the interplay between entry

selection and the assumed structure on the coefficient tensor. We illustrated in simulations that tensor

regression based on the hard PARAFAC can perform poorly for entry selection. Future work could focus

on studying the properties of multiplicity control in structured settings, and forming principled variable

selection approaches with desirable properties within the context of structured data.

Even though we showed that the posterior distribution of the coefficient tensor based on Softer is

consistent irrespective of the tensor’s true rank or the algorithmic rank used, additional theoretical

results would help illuminate Softer’s performance. For example, it would be interesting to understand

how Softer performs under the asymptotic regime where the tensor predictor is allowed to grow with the

sample size. Furthermore, even though our simulation results indicate that Softer reverts back to the

hard PARAFAC when the underlying low-rank structure is true, future approaches to “soft” regression

can investigate whether the soft and hard approaches asymptotically converge if the hard structure is

true. If this result was derived, then it would imply a new form of robustness: robustness in terms of the

method chosen, soft or hard.

Finally, a criticism of Bayesian methods is often their computational burden. One way forward in

alleviating this issue for Softer is to re-formulate our model within the frequentist paradigm. For ex-

ample, one could impose a penalty term on the magnitude of the γ
(d)
k,jk

parameters using penaltyγ(d) =∑
k

∑
jk

(γ
(d)
k,jk

)2, substitute the softening structure in (7) with a penalty term such as penaltyβ(d) =∑
k

∑
˜
j(β

(d)
k,

˜
j − γ

(d)
k,jk

)2, and maximize the penalized likelihood with appropriate tuning parameters. One

might need to link the tuning parameter for penaltyγ(d) with that of penaltyβ(d) to ensure that penaliza-

tion of one does not lead to overcompensation from the other (similarly to our discussion in Section 4.3

for the inclusion of ζ(d) in the distribution for β
(d)
k,

˜
j ). Such L2-norm penalties with a continuous outcome

would imply that the maximization problem is convex and optimization procedures can be developed rel-

atively easily. Even though this reformulation would not reduce the number of parameters, it is expected

to require far fewer iterations than an MCMC procedure. Alternative norms could also be considered to

impose more sparsity, such as using a group-Lasso penalty instead of penaltyβ(d).
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Appendices

A Proofs

Proof of Proposition 1.

Expectation. We use S,Z and W to denote the collection of σ2
k, ζ

(d) and w
(d)
k,jk

, over k, d, and (k, jk, d)

accordingly. We start by noting that

β
(d)
k,

˜
j |σ

2
k, ζ

(d), τγ , w
(d)
k,jk
∼ N(0, σ2

kζ
(d) + τγζ

(d)w
(d)
k,jk

),

and, if (k, jk, d) 6= (k′, j′k, d
′)

β
(d)
k,

˜
j ⊥⊥ β

(d′)
k′,

˜
j′
|S,Z,W, τγ . (A.1)

Note that β
(d)
k,

˜
j is not independent of β

(d)
k,

˜
j′

conditional on (S,Z,W, τγ) when jk = j′k due to their shared

dependence on γ
(d)
k,jk

. Then,

E(B
˜
j |S,Z,W, τγ) = E

( D∑
d=1

K∏
k=1

β
(d)
k,

˜
j |S,Z,W, τγ

)
=

D∑
d=1

K∏
k=1

E
(
β

(d)
k,

˜
j |S,Z,W, τγ

)
= 0

So, a priori, all elements of the coefficient tensor have mean 0, E(B
˜
j) = 0.

Variance.

Furthermore, we have

Var(B
˜
j) = E

{
Var
(
B

˜
j |S,Z,W, τγ

)}
= E

{
Var
( D∑
d=1

K∏
k=1

β
(d)
k,

˜
j |S,Z,W, τγ

)}
.

Since the β
(d)
k,

˜
j are conditionally independent across d,

∏K
k=1 β

(d)
k,

˜
j are also conditionally independent across

d. Moreover, the terms of the product β
(d)
k,

˜
j are independent across k and are mean-zero random variables,

implying that
∏K
k=1 β

(d)
k,

˜
j are mean zero variables. Note here that two independent mean-zero random

variables A,B satisfy that Var(AB) = Var(A)Var(B). Then,

Var(B
˜
j) = E

{ D∑
d=1

K∏
k=1

Var
(
β

(d)
k,

˜
j |S,Z,W, τγ

)}
= E

{ D∑
d=1

K∏
k=1

ζ(d)(σ2
k + τγw

(d)
k,jk

)
}

= EZ
{ D∑
d=1

(ζ(d))K
}
ES,W,τγ

{ K∏
k=1

(σ2
k + τγw

(d)
k,jk

)
}
,

where in the last equation we used that, a priori, Z ⊥⊥ (S,W, τγ) to write ES,W,τγ |Z as ES,W,τγ , and

separate the two expectations.

However, σ2
k + τγw

(d)
k,jk

are not independent of each other for different values of k since they all involve
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the same parameter τγ . We overcome this difficulty in calculating the expectation of the product by

writing
∏K
k=1(σ2

k + τγw
(d)
k,jk

) =
∑K

l=0 clτ
l
γ , where

cl =
∑

K⊂{1,2,...,K}:|K|=l

∏
k∈K

w
(d)
k,jk

∏
k 6∈K

σ2
k

 .

So, for every power of τγ , τ lγ , l ∈ {0, 1, . . . ,K}, the corresponding coefficient is a sum of all terms involving

l distinct w’s and K− l distinct σ2’s. For example, for K = 2, c1 = w
(d)
1,j1

σ2
2 +σ2

1w
(d)
2,j2

. Writing the product

in this way, separates the terms (w
(d)
k,jk

, σ2
k) from τγ , which are a priori independent. Then,

Var(B
˜
j) = EZ

{ D∑
d=1

(ζ(d))K
}
ES,W,τγ

( K∑
l=0

clτ
l
γ

)
= EZ

{ D∑
d=1

(ζ(d))K
}{ K∑

l=0

E(τ lγ)ES,W (cl)
}
.

We continue by studying ES,W (cl) =
∑
K:|K|=l ES,W

(∏
k∈K w

(d)
k,jk

∏
k 6∈K σ

2
k

)
. Note that since all pa-

rameters {w(d)
k,jk

, σ2
k}k for fixed jk are a priori independent (any dependence in the w

(d)
k,jk

exists across jk

of the same mode due to the common value λ
(d)
k ), ES,W (cl) =

∑
K:|K|=l

(∏
k∈K EW (w

(d)
k,jk

)
∏
k 6∈K ES(σ2

k)
)

.

Now, note that E(σ2
k) = aσ

bσ
, and

EW (w
(d)
k,jk

) = EΛ{EW |Λ[w
(d)
k,jk

]} = 2EΛ{(λ(d)
k )−2}.

Since λ
(d)
k ∼ Γ(aλ, bλ), 1/λ

(d)
k ∼ IG(aλ, bλ), we have that

E{(1/λ(d)
k )2} = Var(1/λ

(d)
k ) + E2(1/λ

(d)
k ) =

b2λ
(aλ − 1)(aλ − 2)

, aλ > 2.

Putting this together, we have that, for aλ > 2,

ES,W (cl) =

(
K

l

){ 2b2λ
(aλ − 1)(aλ − 2)

}l(aσ
bσ

)K−l
.

Further, since τγ ∼ Γ(aτ , bτ ), we have that

E(τ lγ) =
baττ

Γ(aτ )

∫
τaτ+l−1
γ exp{−bττγ} dτγ =

Γ(aτ + l)

Γ(aτ )blτ
=
ρl
blτ
,

for ρl = 1 if l = 0, and ρl = aτ (aτ +1) . . . (aτ + l−1) if l ≥ 1. Lastly, since ζ ∼ Dir(α/D,α/D, . . . , α/D),

we have that ζ(d) ∼ Beta(α/D, (D − 1)α/D), and

E{(ζ(d))K} =

K−1∏
r=0

α/D + r

α+ r

Combining all of these, we can write the prior variance for entries B
˜
j of the coefficient tensor as

Var(B
˜
j) = EZ

[ D∑
d=1

(ζ(d))K
] K∑
l=0

ρl

(
K

l

){ 2b2λ
bτ (aλ − 1)(aλ − 2)

}l(aσ
bσ

)K−l
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=
{
D

K−1∏
r=0

α/D + r

α+ r

}[ K∑
l=0

ρl

(
K

l

){ 2b2λ
bτ (aλ − 1)(aλ − 2)

}l(aσ
bσ

)K−l]
.

Covariance.

Since E(B
˜
j |S,Z,W, τγ) = 0, we have that Cov(B

˜
j ,B

˜
j′) = E

{
Cov(B

˜
j ,B

˜
j′ |S,Z,W, τγ)

}
. Remember from

(A.1) that, when at least one of k, jk, d are different, β
(d)
k,

˜
j ⊥⊥ β

(d′)
k′,

˜
j′
|S,Z,W, τγ . However, that is not true

when (k, jk, d) = (k′, j′k, d
′), even if

˜
j 6=

˜
j. We write

E
{

Cov(B
˜
j ,B

˜
j′ |S,Z,W, τγ)

}
= E

{
Cov

( D∑
d=1

K∏
k=1

β
(d)
k,

˜
j ,

D∑
d=1

K∏
k=1

β
(d)
k,

˜
j′

∣∣∣S,Z,W, τγ)
}

=
D∑

d,d′=1

E
{

Cov
( K∏
k=1

β
(d)
k,

˜
j ,

K∏
k=1

β
(d′)
k,

˜
j′
|S,Z,W, τγ

)}
.

However,

Cov
( K∏
k=1

β
(d)
k,

˜
j ,

K∏
k=1

β
(d′)
k,

˜
j′
|S,Z,W, τγ

)
=

E
( K∏
k=1

β
(d)
k,

˜
jβ

(d′)
k,

˜
j′
|S,Z,W, τγ

)
− E

( K∏
k=1

β
(d)
k,

˜
j |S,Z,W, τγ

)
E
( K∏
k=1

β
(d′)
k,

˜
j′
|S,Z,W, τγ

)
=

E
( K∏
k=1

β
(d)
k,

˜
jβ

(d′)
k,

˜
j′
|S,Z,W, τγ

)
,

where the last equation holds because the β
(d)
k,

˜
j are independent of each other across k conditional on

S,Z,W, τγ and have mean zero. Furthermore, since the β
(d)
k,

˜
j are conditionally independent across d,

we have that for d 6= d′, Cov
(∏K

k=1 β
(d)
k,

˜
j ,
∏K
k=1 β

(d′)
k,

˜
j′
|S,Z,W, τγ

)
= 0. So we only need to study the

conditional covariance for d = d′. For Γ representing the set of all γ
(d)
k,jk

, we write

E
( K∏
k=1

β
(d)
k,

˜
jβ

(d)
k,

˜
j′
|S,Z,W, τγ

)
= E

{
E
( K∏
k=1

β
(d)
k,

˜
jβ

(d)
k,

˜
j′
|Γ, S, Z,W, τγ

)
|S,Z,W, τγ

}
.

Conditional on Γ, S, Z,W, τγ , and as long as
˜
j 6=

˜
j′, the β

(d)
k,

˜
j are independent across all indices, even if

they have all of k, jk, d common, leading to

E
( K∏
k=1

β
(d)
k,

˜
jβ

(d)
k,

˜
j′
|S,Z,W, τγ

)
= E

{ K∏
k=1

E
(
β

(d)
k,

˜
j |Γ, S, Z,W, τγ

)
E
(
β

(d)
k,

˜
j′
|Γ, S, Z,W, τγ

)
|S,Z,W, τγ

}
= E

( K∏
k=1

γ
(d)
k,jk

γ
(d)
k,j′k
|S,Z,W, τγ

)
=

K∏
k=1

E
(
γ

(d)
k,jk

γ
(d)
k,j′k
|S,Z,W, τγ

)
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=
∏

k:jk=j′k

E
((
γ

(d)
k,jk

)2|S,Z,W, τγ)
×

∏
k:jk 6=j′k

E
(
γ

(d)
k,jk
|S,Z,W, τγ

)
E
(
γ

(d)
k,j′k
|S,Z,W, τγ

)
= 0

where the first equality holds because
˜
j 6=

˜
j′, the third equality holds because the γ

(d)
k,jk

are conditionally

independent across k, and the fourth equality holds because they are conditionally independent across

jk.

Proof of Proposition 2. We want Var(B
˜
j) = V ∗ and AV = AV ∗. The second target will be achieved

when Var(B
˜
j)/Varhard(B

˜
j) = (1 − AV ∗)−1. Since aσ

bσ
is the quantity driving the soft PARAFAC’s

additional variability we use this condition to acquire a form for aσ
bσ

as a function of the remaining

hyperparameters.

Var(B
˜
j)

Varhard(B
˜
j)

=

∑2
l=0

ρl
blτ

(
2
l

){ 2b2λ
(aλ−1)(aλ−2)

}l(aσ
bσ

)2−l
ρ2
b2τ

{ 2b2λ
(aλ−1)(aλ−2)

}2

=
2∑
l=0

(
2

l

)
ρl
ρ2

{ 2b2λ
bτ (aλ − 1)(aλ − 2)

}l−2(aσ
bσ

)2−l

=
1

ρ2

{ 2b2λ
bτ (aλ − 1)(aλ − 2)

}−2(aσ
bσ

)2
+ 2

ρ1

ρ2

{ 2b2λ
bτ (aλ − 1)(aλ − 2)

}−1aσ
bσ

+ 1

=
1

aτ (aτ + 1)

{ 2b2λ
bτ (aλ − 1)(aλ − 2)

}−2(aσ
bσ

)2
+

2

aτ + 1

{ 2b2λ
bτ (aλ − 1)(aλ − 2)

}−1aσ
bσ

+ 1

Therefore, in order for Var(B
˜
j)/Varhard(B

˜
j) = (1 − AV ∗)−1, aσ

bσ
is the solution to a second degree

polynomial. We calculate the positive root of this polynomial.

∆ =
4

(aτ + 1)2

{ 2b2λ
bτ (aλ − 1)(aλ − 2)

}−2
− 4

aτ (aτ + 1)

{ 2b2λ
bτ (aλ − 1)(aλ − 2)

}−2(
1− (1−AV ∗)−1

)
=

4

(aτ + 1)2

{ 2b2λ
bτ (aλ − 1)(aλ − 2)

}−2[
1− aτ + 1

aτ

{
1−

(
1−AV ∗)−1

}]
> 0.

Since aσ
bσ

is positive, we have that

aσ
bσ

=
− 2
aτ+1

{
2b2λ

bτ (aλ−1)(aλ−2)

}−1
+

√
4

(aτ+1)2

{
2b2λ

bτ (aλ−1)(aλ−2)

}−2[
1− aτ+1

aτ

{
1−

(
1−AV ∗)−1

}]
2

aτ (aτ+1)

{
2b2λ

bτ (aλ−1)(aλ−2)

}−2
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=

−1 +

√
1− aτ+1

aτ

{
1−

(
1−AV ∗)−1

}
1
aτ

{
2b2λ

bτ (aλ−1)(aλ−2)

}−1

=
aτ
bτ

2b2λ
(aλ − 1)(aλ − 2)

{√
1− aτ + 1

aτ

{
1−

(
1−AV ∗)−1

}
− 1

}
. (A.2)

Denoting ξ = 1− aτ + 1

aτ

{
1−

(
1−AV ∗)−1

}
and substituting the form of aσ

bσ
in Var(B

˜
j) we have that

Var(B
˜
j) = C

2∑
l=0

(
2

l

)
ρl
blτ

{ 2b2λ
(aλ − 1)(aλ − 2)

}2(aτ
bτ

)2−l(√
ξ − 1

)2−l

= C
{ 2b2λ

(aλ − 1)(aλ − 2)

}2(aτ
bτ

)2
2∑
l=0

(
2

l

)
ρl
alτ

(√
ξ − 1

)2−l

= C
{ 2b2λ

(aλ − 1)(aλ − 2)

}2(aτ
bτ

)2{(√
ξ − 1

)2
+ 2
(√

ξ − 1
)

+ 1 +
1

aτ

}
= C

{ 2b2λ
(aλ − 1)(aλ − 2)

}2(aτ
bτ

)2{
ξ +

1

aτ

}
Also,

ξ +
1

aτ
= 1− aτ + 1

aτ

{
1−

(
1−AV ∗

)−1}
+

1

aτ
=
aτ + 1

aτ

(
1−AV ∗)−1

leading to

Var(B
˜
j) = V ∗ ⇐⇒

2b2λ
(aλ − 1)(aλ − 2)

=
bτ
aτ

√
V ∗(1−AV ∗)aτ
C(aτ + 1)

. (A.3)

Substituting (A.3) back into (A.2), we have that

aσ
bσ

=

√
V ∗(1−AV ∗)aτ
C(aτ + 1)

{√
1− aτ + 1

aτ

{
1−

(
1−AV ∗)−1

}
− 1

}
.

Proof of Proposition 3. Start by noting that

πB(B∞ε
(
B0
)
) = EΓ,S,Z

[
p
(
B : max

˜
j
|B0

˜
j −B

˜
j | < ε

∣∣∣Γ, S, Z)],
where Γ, S, Z are as defined in the proof of Proposition 1. Then, take ε∗ = K

√
ε/(2(D − 1)) and write

p
(
B : max

˜
j
|B0

˜
j −B

˜
j | < ε

∣∣∣Γ, S, Z) ≥ p(B : max

˜
j
|B0

˜
j −B

˜
j | < ε

∣∣∣Γ, S, Z{|β(d)
k,

˜
j | < ε∗, all k,

˜
j, and d ≥ 2

})
× p
(
|β(d)
k,

˜
j | < ε∗, all k,

˜
j, and d ≥ 2

}
|Γ, S, Z

)
.

30



Conditional on Γ, S, Z, β
(d)
k,

˜
j are independent normal variables with positive weight in an ε∗-neighborhood

of 0, implying that p
(
|β(d)
k,

˜
j | < ε∗, all k,

˜
j, and d ≥ 2

}
|Γ, S, Z

)
> 0.

Remember from (5) that B =
∑D

d=1B
(d)
1 ◦B

(d)
2 ◦ . . .◦B

(d)
K , and denote B(d) = B

(d)
1 ◦B

(d)
2 ◦ . . .◦B

(d)
K .

Then, B
˜
j = B

(1)

˜
j +B

(2)

˜
j + · · ·+B(D)

˜
j . Note that

p
(
B : max

˜
j
|B0

˜
j −B

˜
j | < ε

∣∣∣Γ, S, Z{|β(d)
k,

˜
j | < ε∗, all k,

˜
j, and d ≥ 2

})
≥ p
(
B : max

˜
j
|B0

˜
j −B

(1)

˜
j | < ε/2

∣∣∣Γ, S, Z{|β(d)
k,

˜
j | < ε∗, all k,

˜
j, and d ≥ 2

})
= p
(
B : max

˜
j
|B0

˜
j −B

(1)

˜
j | < ε/2

∣∣∣Γ, S, Z),
where the equality holds because the entries of B(1) are independent of all β

(d)
k,

˜
j for d ≥ 2 conditional on

Γ, S, Z, and the inequality holds because |B0

˜
j −B

(1)

˜
j | < ε/2 and |β(d)

k,
˜
j | < ε∗ for d ≥ 2 implies that

|B0

˜
j −B

˜
j | = |B0

˜
j −B

(1)

˜
j −B

(2)

˜
j − · · · −B

(D)

˜
j |

≤ |B0

˜
j −B

(1)

˜
j |+ |B

(2)

˜
j |+ · · ·+ |B

(D)

˜
j |

< ε/2 + (D − 1)(ε∗)K = ε.

Since all of β
(1)
k,

˜
j are independent conditional on Γ, S, Z, we have that

p
(
B : max

˜
j
|B0

˜
j −B

(1)

˜
j | < ε/2

∣∣∣Γ, S, Z) =
∏
˜
j

p
(
|B0

˜
j −B

(1)

˜
j | < ε/2

∣∣∣Γ, S, Z) > 0,

since all entries B
(1)

˜
j are products of draws from K normal distributions and therefore assign positive

weight in all R, including the ε/2−neighborhood of B0

˜
j .

Putting all of this together, we have the desired result that πB(B∞ε
(
B0
)
) > 0.

Proof of Proposition 4. We show that for any ε > 0, there exists ε∗ > 0 such that
{
B : max

˜
j |B0

˜
j −

B
˜
j | < ε∗

}
⊆
{
B : KL(B0,B) < ε

}
, where

KL(B0,B) =

∫
log

φ(y;B0)

φ(y;B)
φ(y;B0)dy,

and φ(y;B) is the density of a normal distribution with coefficient tensor B and variance 1. If we show

this, consistency follows from Schwartz [1965].

Assume that there exists M such that |X
˜
j | < M for all

˜
j with probability 1. For two normal

distributions with mean 〈X,B0〉F and 〈X,B〉F respectively, we have that

KL(B0,B) =
1

2

(
〈X,B0〉F − 〈X,B0〉F

)2

=
1

2

[∑
˜
j

(
B0

˜
j −B

˜
j

)
X

˜
j

]2
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≤ 1

2

[∑
˜
j

(
B0

˜
j −B

˜
j

)2][∑
˜
j

X2

˜
j

]

Take ε∗ =
√

2ε/
(
M(p1p2 . . . pK)2

)
and consider B ∈ B∞ε∗

(
B0
)
. We will show that B satisfies that

KL(B0,B) < ε completing the proof. Note first that

∑
˜
j

(
B0

˜
j −B

˜
j

)2 ≤ p1p2 . . . pk max

˜
j

(
B0

˜
j −B

˜
j

)2
< p1p2 . . . pk(ε

∗)2 =
2ε

Mp1p2 . . . pK
,

and since |X
˜
j | ≤M we have that

∑
˜
jX

2

˜
j ≤Mp1p2 . . . pK . Putting these results together

KL(B0,B) <
1

2

2ε

Mp1p2 . . . pK
Mp1p2 . . . pK = ε.

B Hard PARAFAC error in estimating the true matrix for an increasing rank

Due to the block structure and subsequent “inflexibility” of the hard PARAFAC approximation, a large

number of components D might be required in order to adequately approximate a coefficient tensorB. To

further demonstrate this, we considered a coefficient matrixB whose entries Bij are centered around (but

are not equal to) the entries of a rank-1 matrix of the form β1⊗β2. Therefore, even though the matrix has

a somewhat rectangular structure, it is not exactly in that form. Using the singular value decomposition

(which is the PARAFAC analog for matrices), we considered the quality of the approximation based on

D factors, for various values of D. Figure B.1 shows histograms of the difference of the true entries in B

from the estimated ones. Even for D = 20, substantial error remains in estimating the matrix B.

Figure B.1: Histogram of errors in estimating the entries of B when B resembles but is not exactly equal
to a rank-1 tensor, and estimation is based on the singular value decomposition using D ∈ {3, 10, 20, 50}
factors.

C Alternative sampling from the posterior distribution

The full set of parameters is θ = {µ, δ, τ2, β
(d)
k,

˜
j , γ

(d)
k,jk

, σ2
k, ζ

(d), w
(d)
k,jk

, λ
(d)
k , τ2

γ , for all d, k, jk,
˜
j}. We use

the notation |· and |·,−y to denote conditioning on the data and all parameters, and the data and all
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parameters but y, accordingly. Then, our MCMC updates are:

• (µ, δ)|· ∼ N(µ∗,Σ∗), for Σ∗ = (Σ−1
0 + C̃T C̃/τ2)−1, and µ∗ = Σ∗C̃TRB/τ

2, where C̃ is the

N × (p+ 1) matrix with ith row equal to (1,Ci), and RB = (Y1− 〈X1,B〉F , . . . , YN − 〈XN ,B〉F )T

is the vector of residuals of the outcome on the tensor predictor.

• τ2|· ∼ IG(aτ +N/2, bτ +
∑N

i=1(Yi − µ−CT
i δ − 〈Xi,B〉F )).

• σ2
k|· ∼ giG(p∗, a∗, b∗), for p∗ = aσ −D

∏K
k=1 pk/2, a∗ = 2bσ, and b∗ =

∑
d,

˜
j(β

(d)
k,

˜
j − γ

(d)
k,jk

)2/ζ(d). As a

reminder, X ∼ giG(p, a, b) if p(x) ∝ xp−1 exp{−(ax+ b/x)/2}.

• γ(d)
k,jk
|· ∼ N(µ∗, σ2∗), for σ2∗ =

{
(τγw

(d)
k,jk

ζ(d))−1 +
(∑
l 6=k

pl
)
/(σ2

kζ
(d))
}−1

, µ∗ = σ2∗
{ ∑

˜
j:
˜
j
k
=jk

β
(d)
k,
˜
j/(σ

2
kζ

(d))
}

.

• τγ |· ∼ giG
(
aτ −D

∑
k pk/2, 2bτ ,

∑
d,k,jk

(γ
(d)
k,jk

)2/(ζ(d)w
(d)
k,jk

)
)
.

• w(d)
k,jk
|· ∼ giG(1/2, λ2

k, (γ
(d)
k,jk

)2/(τγζ
(d))).

• [λ
(d)
k |·,−w

(d)
k,jk

, all jk] ∼ Γ(aλ + pk, bλ +
∑

jk
|γ(d)
k,jk
|/(τγζ(d))). Therefore, λ

(d)
k is updated conditional

on all parameters excluding all w
(d)
k,jk

, jk = 1, 2, . . . , pk. Its distribution can be acquired by noting

that γ
(d)
k,jk
|τγ , ζ(d), λ

(d)
k ∼ DE(µ = 0, b = τγζ

(d)/λ
(d)
k ) [Park and Casella, 2008], where DE stands for

double exponential or Laplace distribution.

• for each k = 1, 2, . . . ,K, d = 1, 2, . . . , D and jk = 1, 2, . . . ,K, we use B
(d)
k,jk

to denote the jthk slice

of tensor B
(d)
k along mode k, which is a (K − 1)-mode tensor. Then, vec(B

(d)
k,jk

)|· ∼ N(µ∗,Σ∗), for

Σ∗ =
(
Σ−1
π +

(∑N
i=1 ΨiΨ

T
i

)
/τ2
)−1

, and µ∗ = Σ∗
(
Σ−1
π µπ +

(∑N
i=1 ΨiRi,Ψ

)
/τ2
)
, where

– Σπ is a diagonal matrix of dimension
(∏K

k=1 pk
)
/pk with repeated entry σ2

kζ
(d),

– µπ is a constant vector of length
(∏K

k=1 pk
)
/pk with entry γ

(d)
k,jk

,

– Ψi = vec(B
(d)
1 ◦ . . . ◦B(d)

k−1 ◦B
(d)
k+1 . . .B

(d)
K ◦Xi), and

– Ri,Ψ = Yi−α−CT
i δ−〈Xi,

∑
r 6=dB

(r)
1 ◦B

(r)
2 ◦ . . .◦B

(r)
K 〉F is the residual excluding component

d of the coefficient tensor.

• for each d = 1, 2, . . . , D, we update ζ(d) from its full conditional, and then ensure that ζ sums to

1, by dividing all its entries with
∑D

d=1 ζ
(d). The ζ(d) update is from ζ(d)|· ∼ giG(p∗, a∗, b∗), where

p∗ = α/D −K(
∏
pk +

∑
pk)/2, a∗ = 0, and b∗ =

∑
k,

˜
j(β

(d)
k,

˜
j − γ

(d)
k,jk

)2/σ2
k +

∑
k,jk

γ2
k,jk

/(τγw
(d)
k,jk

).

D Additional simulation results

D.1 Comparing Softer and PARAFAC in identifying important entries of tensor predictor

In Section 5.1 we presented an evaluation of the relative performance of Softer and hard PARAFAC in

identifying important entries. There, we shows that Softer has significant lower FPR indicating that the

two methods systematically disagree in the entries of the tensor predictor they identify as important. In

order to study their disagreement, for each entry of the tensor predictor we calculate the percentage of

data sets for which Softer or hard PARAFAC identifies the entry as important while the other does not.
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Figure D.1: Percentage of simulated data sets that an entry with coefficient shown on the x-axis was
identified as important by the stated method but not of the other one in the feet (left) and dog (right)
scenario respectively.
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Figure D.2: Percentage of data sets that an entry was identified as important by hard PARAFAC and
not by Softer in the feet (left) and dog (right) scenario respectively.

We plot the results in Figure D.1 as a function of the entry’s true coefficient. We see that the entries

that Softer identifies as important and hard PARAFAC does not happen uniformly over the entries’ true

coefficient. In contrast, when hard PARAFAC identifies an entry as important and Softer does not, it is

more likely that the coefficient of this entry will be in reality small or zero.

When further investigating this feature of PARAFAC, we identified that the entries that it identifies

as significant in disagreement to Softer are most often the ones that attribute to the coefficient tensor’s

block structure. This is evident in Figure D.2 where we see that the entries with high identification by

PARAFAC in contrast to Softer are the ones at the boundary of the truly non-zero entries.

D.2 Simulation results with alternative coefficient tensors

For a tensor predictor of dimension 32 × 32 we also considered three alternative coefficient matrices.

The constant squares represent a rank-3, sparse scenario. Both the hard PARAFAC and the Lasso are

expected to perform well in this situation, and we are interested in investigating Softer’s performance

when softening is not necessary. The varying feet and dog scenarios are scenarios similarly to the dog

and feet of the main text but for non-zero entries varying between 0.5 and 1.
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Figure D.3: Simulation results for alternative coefficient matrices. True coefficient matrix and average
across simulated data sets of the coefficient matrix posterior mean for Softer and hard PARAFAC and
the penalized estimator for the Lasso. Note that the color scale is the same for the true, Softer and
hard PARAFAC approaches, but different for the Lasso because the order of estimated coefficients for
the Lasso is much smaller.

Figure D.3 shows the true and average estimated coefficient matrices in these additional simulations.

Even though we plot the true, Softer, and hard PARAFAC matrices using a common scale, we plot

the expected coefficients employing Lasso using a different color scale. That is because, we want to

show that Lasso gets the correct structure, on average, but largely underestimates coefficients due to the

assumption of sparsity. Further, Table D.1 reports the average absolute bias, root mean squared error

and 95% coverage of the truly zero, and truly non-zero coefficients, and the prediction mean squared

error. When the true underlying hard PARAFAC structure is correct, Softer is able to revert back to its

hard version, as is evident by the simulation results for the constant squares coefficient matrix. Further,

Softer performs better than the hard PARAFAC for the varying feet and varying dog scenarios. In all

three scenarios, Softer has the best out-of-sample predictive ability.

D.3 Simulation results for 32× 32 tensor predictor and sample size n = 200

Simulation results in this section represent a subset of the scenarios (dog, feet, diagonal) in Section 5.1

but for sample size n = 200. The general conclusions from Section 5.1 remain even when considering a

smaller sample size. Figure D.4 shows a plot similar to the one in Figure 5 including the true coefficient

matrices and average posterior mean or penalized estimate across data sets. Again, the color scale of the

results is the same for Softer and hard PARAFAC, but is different for the Lasso. Using different scales

facilitates illustration of the underlying structure the methods estimate, even though different methods

estimate different magnitude of coefficients. For example, Lasso estimates the feet structure, but non-zero

coefficients are greatly underestimated around 0.1 (instead of 1). In contrast, in the truly sparse, diagonal

35



Softer PARAFAC Lasso

constant Truly zero bias 0.0016 0.0014 0.0013
squares rMSE 0.016 0.015 0.016

coverage 99.2% 99.7% -

Truly non-zero bias 0.0211 0.017 0.073
rMSE 0.06 0.076 0.093
coverage 90.9% 79.6% -

Prediction MSE 0.79 1.25 1.32

varying Truly zero bias 0.06 0.076 0.014
feet rMSE 0.123 0.145 0.169

coverage 96.4% 90.7% –

Truly non-zero bias 0.165 0.205 0.569
rMSE 0.244 0.279 0.661
coverage 87.7% 73.8% –

Prediction MSE 40.79 55.19 194

varying Truly zero bias 0.071 0.091 0.013
dog rMSE 0.159 0.176 0.152

coverage 98.3% 92.7 –

Truly non-zero bias 0.263 0.321 0.554
rMSE 0.358 0.398 0.644
coverage 81.2 63.2 –

Prediction MSE 67.6 85.3 159.2

Table D.1: Average bias, root mean squared error, frequentist coverage of 95% credible intervals among
truly zero and truly non-zero coefficient entries, and predictive mean squared error for Softer, hard
PARAFAC and Lasso for the simulation scenario with tensor predictor of dimensions 32× 32 and sample
size n = 400. Bold text is used for the approach performing best in each scenario and for each metric.

scenario, Lasso estimates non-zero coefficients at about 0.8 whereas Softer estimates them to be close to

0.3, and hard PARAFAC near 0.06.

One of the main conclusions is that Softer deviates less from hard PARAFAC when the (n, p) ratio

is small, which is evident by the more rectangular structure in the mean coefficient matrix for the

dog scenario, and the stronger shrinkage of the non-zero coefficients in the diagonal scenario. Further,

Table D.2 show the average absolute bias and root mean squared error for estimating the coefficient

matrix entries, and the prediction mean squared error.

D.4 Simulation results for alternative rank of hard PARAFAC

In order to investigate the reliance of hard PARAFAC and Softer on the rank of the PARAFAC ap-

proximation, we considered the simulation scenarios of Section 5.1 for D = 7. Results are shown in

Table D.3. (Simulations comparing the performance of Softer and the hard PARAFAC for varying D

under an alternative scenario are included in Appendix D.5).

Comparing Table D.3 to the results in Section 5.1 it is evident that the performance of Softer is

remarkably unaltered when D = 3 or D = 7. Perhaps the only difference is in the dog simulations where

bias and mean squared error for the truly zero coefficients is slightly increased when D = 7. This indicates
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Figure D.4: True coefficient matrix and average across simulated data sets of the coefficient matrix
posterior mean for Softer and hard PARAFAC. Note that the true matrices might be shown at a different
color scale than the estimated ones.

that Softer is robust to the specification of the rank of the underlying hard PARAFAC.

In contrast, the hard PARAFAC approach shows some improvements in performance when D = 7

compared to D = 3. This is evident when examining the bias and rMSE for the coefficient entries in the

feet, dog, and diagonal scenarios. Specifically, the hard PARAFAC shows up to 15% decreases in absolute

bias and up to 10% in rMSE. When examining the mean estimated coefficient matrices (not shown) we

see the improvements in estimation are in picking up the toes (in the feet scenario) and the eyes (in the

Softer PARAFAC Lasso

feet Truly zero 0.06 (0.14) 0.065 (0.15) 0.01 (0.118)
Truly non-zero 0.216 (0.332) 0.229 (0.328) 0.535 (0.585)
Prediction 95.4 (76.6, 111.1) 94 (78.8, 107.5) 312 (299, 323)

dog Truly zero 0.042 (0.155) 0.087 (0.164) 0.017 (0.155)
Truly non-zero 0.171 (0.264) 0.174 (0.254) 0.248 (0.305)
Prediction 110.6 (99.6, 121.1) 101.2 (94, 107.8) 177.3 (170.9, 183.4)

diagonal Truly zero 0.005 (0.054) 0.003 (0.038) 0.002 (0.02)
Truly non-zero 0.753 (0.773) 0.945 (0.948) 0.149 (0.181)
Prediction 22.76 (21.04, 24.29) 31.08 (30.1, 31.78) 2.00 (1.57 2.32)

Table D.2: Mean bias and rMSE among truly zero and truly non-zero coefficient entries (presented as
bias (rMSE)), and average and IQR of the predictive mean squared error (presented as average (IQR))
for tensor predictor of dimensions 32 × 32 and n = 200. Bold text is used for the approach minimizing
these quantities in each scenario.
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Softer PARAFAC
squares Truly zero bias 0.003 0.005

rMSE 0.034 0.049
coverage 99.5% 98.6%

Truly non-zero bias 0.085 0.104
rMSE 0.111 0.146
coverage 79.6% 70.5%

Prediction MSE 5.17 8.76
feet Truly zero bias 0.035 0.041

rMSE 0.092 0.104
coverage 97.3% 96.7%

Truly non-zero bias 0.112 0.128
rMSE 0.181 0.199
coverage 89.2% 85.2%

Prediction MSE 30.69 37.15
dog Truly zero bias 0.079 0.078

rMSE 0.138 0.138
coverage 92.8% 94.7%

Truly non-zero bias 0.084 0.095
rMSE 0.157 0.166
coverage 92.4% 90.3%

Prediction MSE 32.49 36.68
diagonal Truly zero bias 0.002 0.005

rMSE 0.02 0.06
coverage 100% 99.9%

Truly non-zero bias 0.113 0.852
rMSE 0.128 0.861
coverage 93.3% 4.1%

Prediction MSE 1.43 28.09

Table D.3: Simulation results for PARAFAC rank D = 7.

dog scenario). However, the improvements in performance are quite minor. We suspect that the reason is

that the decrease in singular values of the true coefficient matrices is slow after the first three, indicating

that adding a few additional components does not drive much of the approximation. Relatedly, it is likely

that the Dirichlet prior on ζ in Guhaniyogi et al. [2017], along with a prior on Dirichlet parameter α,

effectively reduces the approximation rank to values smaller than 7.

Despite the improvements in performance for the hard PARAFAC when the rank is increased, Softer

with either rank (D = 3 or 7) outperforms the hard PARAFAC. We suspect that the reason is that Softer

allows for unstructured deviations from the underlying PARAFAC with D = 3, compared to structured

increases in rank like the ones in the hard PARAFAC.

D.5 Comparing Softer and the hard PARAFAC when varying the underlying rank D and

the true rank of the coefficient tensor

We focus on the simulations in Section 5.2 where we vary the true rank of the coefficient tensor and

evaluate the relative performance of Softer and the hard PARAFAC. Here, we evaluate how Softer and

the hard PARAFAC perform when also varying the rank D used by each algorithm. Remember that the
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Figure D.5: Softer and hard PARAFAC Performance for Varying D. Bias, MSE and predictive MSE
(rows) for varying algorithmic rank D (illustrated by different colors) and varying rank of the true
coefficient matrix (horizontal axis) for the hard PARAFAC (left) and Softer (right).

predictor is of dimension 20× 20 and the sample size is set to 200.

Figure D.5 shows the method performance for varying algorithmic rank D and varying rank of the

true coefficient matrix. Of course, as the true rank of the coefficient tensor increases, the performance of

both methods deteriorates, irrespective of the algorithmic rank used. That is expected since the problem

becomes harder with more parameters required to estimate the coefficient matrix, and sample size always

equal to 200. As illustrated in Section 5.2, the performance of Softer is generally better than that of the

hard PARAFAC, especially when the true rank is larger than the value of D used.

Next, we compare how the same method performs for different values of D. The performance of

the hard PARAFAC with higher values of D is consistently better than the same method’s performance

for lower values of D. In contrast, Softer performance is strikingly similar across most values of D,

illustrated by essentially indistinguishable lines, especially for larger values of the true coefficient tensor.

These results again illustrate that the results from Softer are robust to the choice of D.
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E Additional information on our brain connectomics study

E.1 Outcome information for our brain connectomics study

Table E.1 shows the full list of outcomes we considered in our analysis. Both binary and continuous

outcomes are considered. Information includes the category of trait. C/B represents continuous and

binary outcomes.

Category Name Description #obs Type Mean (SD)

Cognition ReadEng AgeAdj Age adjusted reading score 1,065 C 107.1 (14.8)

PicVocab AgeAdj
Age adjusted vocabulary

comprehension
1,065 C 109.4 (15.2)

VSPLOT TC
Spatial Orientation (Variable Short

Penn Line Orientation Test)
1,062 C 15 (4.44)

Motor Endurance AgeAdj Age Adjusted Endurance 1,063 C 108.1 (13.9)

Strength AgeAdj Age Adjusted Strength 1,064 C 103.6 (20.1)

Substance Intake Alc 12 Drinks Per Day Drinks per day 1,010 C 2.3 (1.57)

Alc Hvy Frq 5plus Frequency of 5+ drinks 1,011 C 3 (1.44)

TB DSM Difficulty Quitting Tobacco difficulty quitting 280 B 74.6%

Mj Ab Dep Marijuana Dependence 1,064 B 9.3%

Psychiatric and ASR Intn T
Achenbach Adult Self-Report

(Internalizing Symptoms)
1,062 C 48.5 (10.7)

Life function ASR Oth Raw
Achenbach Adult Self-Report (Other

problems)
1,062 C 9.1 (4.6)

Depressive Ep

Has the participant experienced a

diagnosed DSMIV major depressive

episode over his/her lifetime

1,035 B 9.2%

Emotion AngHostil Unadj
NIH Toolbox Anger and Affect

Survey (Attitudes of Hostility)
1,064 C 50.5 (8.58)

Personality NEOFAC Agreeableness “Big Five” trait: Agreeableness 1,063 C 32 (4.93)

Health BMI Body Mass Index 1,064 C 26.4 (5.1)

Table E.1: List of outcomes with description and descriptive statistics.

E.2 Additional Results

Figure E.1 shows predictive power of (1) symmetric Softer with D = 3 and (2) D = 6, (3) standard

Softer ignoring symmetry with D = 6, (4) hard PARAFAC and (5) Lasso. Results from (2), (4), and

(5) are also shown in Figure 7. Comparing results from (1) and (2) we see that increasing the rank from

D = 3 to D = 6 improved predictions for a subset of outcomes. Ignoring the symmetry of the tensor

predictor performed sometimes better and sometimes worse than accounting for symmetry directly into

Softer, showing that the two approaches perform comparably for prediction (comparing (2) and (3)).
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Figure E.1: Additional study results showing predicted variable explained and percentage of correctly
classified held-out data based on a larger set of approaches.

The two versions of Softer with D = 3 and D = 6 returned related results for the identified important

entries. Table E.2 shows the connections identified based on Softer for D = 3. When comparing the

identified entries between symmetric Softer with rank 3 and 6, we see that the important connection

for strength in Table 4 is also identified by Softer with D = 3, using either count or CSA as the tensor

predictor. However, Softer with D = 3 identified a larger number of important connections for predicting

strength than Softer with D = 6, though all of the connections involved the Precuneus region. The 3

connections identified by Softer with D = 3 using CSA were among the 5 connections identified by the

same method using count as the predictor, an indication of stability in the identified brain connections

across different features of brain connections. These results indicate the interplay between increasing

the number of parameters to be estimated when increasing the rank, with the increased flexibility that

increasing the rank provides to estimation. No important connections were identified for having had a

depressive episode when using Softer with D = 3, and the identified connection for predicting VSPLOT

includes the Banks of Superior Temporal Sulcus as one of the two regions, though in the different hemi-

sphere and in combination with a different region for D = 3 and D = 6. It is also promising that the

2 out of 3 connections identified by Softer with D = 3 for CSA tensor predictor and endurance as the
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Outcome Feature ROI 1 ROI 2
Strength Count (rh) Precuneus (rh) Superior Parietal ∗∗

(lh) Superior Frontal ∗
(rh) Caudal Middle Frontal ∗
(rh) Isthmus of cingulate gyrus
(rh) Pericalcarine

CSA (rh) Precuneus (rh) Superior Parietal ∗∗
(lh) Superior Frontal ∗
(rh) Caudal Middle Frontal ∗

VSPLOT CSA (rh) Banks of Superior Temporal Sulcus (lh) Superior Frontal
Endurance CSA (lh) Cuneus (lh) Pericalcarine ∗

(lh) Cuneus (rh) Pericalcarine ∗
(lh) Insula (rh) Inferior Parietal

∗∗: connections that are related to those identified based on Softer with D = 6.
∗: connections that are also identified based on alternative feature, outcome, or hemisphere.

Table E.2: Identified connections based on Softer with D = 3.

outcome correspond to the same pair of regions, though in the opposite hemisphere.

E.3 Reproducibility of identified connections across subsamples

We fit Softer with D = 6 on 15 randomly chosen subsamples of our data which included 90% of the

observations. Since the sample size is smaller in the subsamples, we expect our power to detect important

connections to also decrease. We investigate in how many of the subsamples we identify the connections

marked as “important” in the full data set (with the same method), shown in Table 4.

Strength. Using the count of streamlines as the tensor predictor, Softer with D = 6 identified one

important connection between the ROIs Precuneus and Superior Parietal, both in the right hemisphere.

The same connection was also identified in 10 out of 15 subsamples, while Softer did not identify any

important connection in 4 of the subsamples. These results indicate that the identified connection for

strength based on the count of streamlines stated in Table 4 is reproducible across subsamples.

Depressive Episode. Out of 15 subsamples, Softer with D = 6 identified important connections in 6

subsamples when using count of streamlines, and in 7 subsamples when using CSA as the tensor predictor.

The connection between the Parahippocampal in the left hemisphere and the Lateral Orbitofrontal in the

right hemisphere, was identified in all 13 instances with identified connections, based on either predictor

(and in agreement with the results in Table 4). What’s more, any of the connections identified across any

subsample and for either predictor involved at least one of these two regions, implying that the importance

of these two regions in predicting whether an individual has had a depressive episode is reproducible.

VSPLOT. Using CSA as the tensor predictor, Softer with D = 6 identified no connections in any of

the subsamples. This might imply that the connection in Table 4 is not reproducible, or that the reduced

sample size in the subsamples does not allow us to identify it.

42



F Symmetric and semi-symmetric soft tensor regression

F.1 Softer for symmetric 2-mode predictor

We start again from model (2) with Yi = µ+CT
i δ+〈Xi,B〉F +εi. However, now Xi is an R×R symmetric

matrix with ignorable diagonal elements. This means that we can think of B as a real symmetric matrix

with ignorable diagonal elements.

F.1.1 Eigenvalue decomposition of real symmetric matrices

We can still approximate B in the same way as in PARAFAC (SVD) by writing B =
∑D

d=1 γ
(d)
1 ⊗ γ(d)

2

for some D large enough and γ
(d)
1 , γ

(d)
2 ∈ RR. However, this would not enforce that B is symmetric,

since Bj1j2 =
∑D

d=1 γ
(d)
1,j1

γ
(d)
2,j2
6=
∑D

d=1 γ
(d)
1j2
γ

(d)
2j1

= Bj2j1 . This implies that the entries of B would only be

identifiable up to Bj1j2 +Bj2j1 .

Since B is a real symmetric matrix, it is diagonalizable and it has an eigenvalue decomposition.

Therefore, we can think of approximating B using

B =
D∑
d=1

ξ(d)γ(d) ⊗ γ(d), (F.1)

for sufficiently large D, where γ(d) ∈ RR and ξ(d) ∈ R. Note that the vectors γ(d) here resemble the ones

in the PARAFAC decomposition, but they are the same across the two tensor modes (matrix rows and

columns).

The main difference between using the eigenvalue-based approximation in (F.1), compared to the

PARAFAC-based approximation is the inclusion of the parameters ξ(d). Here, ξ(d) are necessary in order

to have a eigenvalue decomposition employing vectors with real entries. In fact, excluding ξ(d) from (F.1)

can only be used to approximate positive definite symmetric matrices. To see this, take vector v ∈ RR.

Then,

vT
( D∑
d=1

γ(d) ⊗ γ(d)
)
v = vT

( D∑
d=1

γ(d)γ(d)T
)
v =

D∑
d=1

vTγ(d)(vTγ(d))T =

D∑
d=1

(vTγ(d))2 ≥ 0

F.1.2 Soft eigenvalue-based tensor regression

In the case of tensor predictors without symmetries, Softer was built based on the PARAFAC (multimodal

equivalent to SVD) approximation of the coefficient tensor. Instead, for symmetric matrices, Softer is

based on the eigenvalue decomposition while still allowing for deviations in row (and column)-specific

contributions. However, these deviations also have to account for the symmetric nature of the tensor

predictor.

Write B =
∑D

d=1 ξ
(d)B

(d)
1 ◦ B(d)

2 similarly to (5), and assume prior distributions on all parameters

as in Section 4.3. Note that the parameters γ(d) are not forced to be of norm 1 (as in classic eigenvalue

decomposition), and they can have any magnitude. This allows us to restrict the parameters ξ(d) to be in

{−1, 1}, and base shrinkage of unnecessary ranks on shrinkage of the vectors γ(d). Therefore, we assume

a Bernoulli(0.5) distribution over {−1, 1} for parameters ξ(d).
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However, even though the symmetry of the underlying decomposition is enforced based on γ(d), we

need to ensure that it is also enforced when writing B =
∑D

d=1 ξ
(d)B

(d)
1 ◦B

(d)
2 using B

(d)
1 ,B

(d)
2 . Note that

the Softer framework assumes that entries β
(d)
1,j1j2

are centered around γ
(d)
j1

, and similarly entries β
(d)
2,j1j2

are centered around γ
(d)
j2

. However, doing so does not necessarily lead to symmetric matrices B since

Bj1j2 =

D∑
d=1

β
(d)
1,j1j2

β
(d)
2,j1j2

6=
D∑
d=1

β
(d)
1,j2j1

β
(d)
2,j2j1

= Bj2j1 .

We enforce symmetry of B by focusing only on the lower-triangular part. Softer for symmetric matrix

predictor specifies row i’s contributions to entries Bij , β
(d)
1,ij , as centered around γ

(d)
i only for i > j. Then,

for j > i we set β
(d)
1,ij = β

(d)
1,ji. Similarly, column i’s contributions to entries Bji, β

(d)
2,ji are centered around

γ
(d)
i only for i < j, and for j > i we set β

(d)
2,ji = β

(d)
2,ij . An equivalent way to enforce symmetry on B is to

allow all entries in B
(d)
1 to have the same form as in Softer, and force B

(d)
2 = (B

(d)
1 )T .

F.1.3 Note on implementation using RStan

Note that RStan cannot directly handle discrete parameters as ξ(d). The most common approach to

discrete parameters is to specify the likelihood integrating these parameters out. However, this approach

is not easily applicable in our setting since ξ(d) are entangled in the likelihood through their role in

the coefficient matrix B. For that reason, we take an alternative approach, and assume that ξ(d) are

continuous and specify a mixture of normals distribution on each of them: ξ(d) ∼ 0.5N(−1, 0.001) +

0.5N(1, 0.001). Since the parameters ξ(d) are not directly of interest, and shrinkage of the contributions

of component d in a rank−D decomposition is achieved through the prior on γ(d), we expect that this

approach will closely resemble results from a specification that defines ξ(d) to be binary taking values in

{−1, 1} from a Bernoulli(0.5) distribution.

F.2 Softer for semi-symmetric 3-mode tensor

In brain connectomics, and specifically in our study of features of brain connections and their relationship

to traits, tensor predictors are often of dimensions R × R × p and are semi-symmetric. Semi-symmetry

means that the predictor X is symmetric along its first two modes and Xj1j2j3 = Xj2j1j3 . An example

of such tensor includes R brain regions along the first two modes and p features of brain connection

characteristics along its third mode. When these features are symmetric (feature of connection from

region i to region j is the same as the feature of connection from region j to region i), the tensor

predictor is semi-symmetric. In such cases, the standard Softer approach could be applied, but entries of

B would be identifiable only up to Bj1j2j3 +Bj2j1j3 . In order to account for the semi-symmetry in X we

can enforce the same type of semi-symmetry in B by adopting a PARAFAC-eigenvalue decomposition

hybrid.

Specifically, assume that B is a 3-mode semi-symmetric coefficient tensor corresponding to the semi-

symmetric predictor X. Then, for sufficiently large D, γ(d) ∈ RR and ρ(d) ∈ Rp, we can write

B =
D∑
d=1

γ(d) ⊗ γ(d) ⊗ ρ(d). (F.2)
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This leads to a natural approximation for B for some value D potentially smaller than the true one.

Softer for semi-symmetric tensor predictor builds on (F.2) while allowing for deviations in the row-specific

contributions along the three modes.

We achieve that by specifyingB =
∑D

d=1B
(d)
1 ◦B

(d)
2 ◦B

(d)
3 forB

(d)
k are tensors of dimensions R×R×p.

The structure and specification of B
(d)
k are as in Section 4.3 with small changes to account for the semi-

symmetric structure in X and ensure that the estimated coefficient tensor is also semi-symmetric. Note

that the (j1, j2, j3) entry of B is equal to

Bj1j2j3 =

D∑
d=1

β
(d)
1,j1j2j3

β
(d)
2,j1j2j3

β
(d)
3,j1j2j3

,

and we wantBj1j2j3 = Bj2j1j3 . Borrowing from the symmetric case, we allow all row-specific contributions

along mode 1, β
(d)
1,j1j2j3

, to vary around the corresponding entry in the decomposition (F.2), γ
(d)
j1

, and set

B2,..j3 = BT
1,..j3

. Further, we allow entries β
(d)
3,j1j2j3

to vary around ρ
(d)
j3

for j1 < j2, and set β
(d)
3,j1j2j3

=

β
(d)
3,j2j1j3

when j1 > j2. Doing so, ensures that Bj1j2j3 = Bj2j1j3 .
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