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ABSTRACT

A common goal in comparative effectiveness research is to estimate treatment effects on pre-

specified subpopulations of patients. Though widely used in medical research, causal inference

methods for such subgroup analysis remain underdeveloped, particularly in observational stud-

ies. In this article, we develop a suite of analytical methods and visualization tools for causal

subgroup analysis. First, we introduce the estimand of subgroup weighted average treatment

effect and provide the corresponding propensity score weighting estimator. We show that bal-

ancing covariates within a subgroup bounds the bias of the estimator of subgroup causal effects.

Second, we design a new diagnostic graph—the Connect-S plot—for visualizing the subgroup

covariate balance. Finally, we propose to use the overlap weighting method to achieve exact

balance within subgroups. We further propose a method that combines overlap weighting and

LASSO, to balance the bias-variance tradeoff in subgroup analysis. Extensive simulation stud-

ies are presented to compare the proposed method with several existing methods. We apply the

proposed methods to the Patient-centered Results for Uterine Fibroids (COMPARE-UF) reg-

istry data to evaluate alternative management options for uterine fibroids for relief of symptoms

and quality of life.
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1 Introduction

Comparative effectiveness research (CER) aims to estimate the causal effect of a treatment(s)

in comparison to alternatives, unconfounded by differences between characteristics of subjects.

CER has traditionally focused on the average treatment effect (ATE) for the overall population.

However, different subpopulations of patients may respond to the same treatment differently

(Kent and Hayward, 2007; Kent et al., 2010), and in recent years the CER literature has in-

creasingly shifted attention to heterogeneous treatment effects (HTE) (Hill, 2011; Imai and

Ratkovic, 2013; Schnell et al., 2016; Wager and Athey, 2018; Lee et al., 2018). In particular,

recent research employs machine learning methods to directly model the outcome function and

consequently identify the subpopulations with significant HTEs post analysis. Popular exam-

ples include the Bayesian additive regression trees (BART) (Chipman et al., 2010; Hill, 2011),

Causal Forest (Wager and Athey, 2018), and Causal boosting (Powers et al., 2018). In this

article, we focus on a different type of HTE analysis, widely used in medical research: the

causal subgroup analysis (SGA) which estimates treatment effects in pre-specified—usually

defined using pre-treatment covariates—subgroups of patients. There is an extensive literature

on SGA methods in randomized controlled trials (Assmann et al., 2000; Pocock et al., 2002;

Wang et al., 2007; Varadhan and Wang, 2014; Alosh et al., 2017). However, causal inference

methods for SGA with observational data remain underdeveloped (Radice et al., 2012; Dong

et al., 2020; Ben-Michael et al., 2020).

In the context of ATE, covariate balance has been shown to be crucial to unbiased esti-

mation of causal effects(Imai and Ratkovic, 2014; Zubizarreta, 2015). Propensity score meth-

ods(Rosenbaum and Rubin, 1983) are the most popular method for achieving covariate balance,

but have seldom been discussed in SGA(Radice et al., 2012; Dong et al., 2020). Compared to

the aforementioned machine learning methods that directly model the outcomes, propensity

score methods are design-based in the sense that they avoid modeling the outcome, and robust-
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ness to mis-specification can be checked through balance diagnostics(Rubin, 2008). In this pa-

per we focus on the propensity score weighting approach(Robins and Rotnitzky, 1995; Robins

et al., 2000; Hirano and Imbens, 2001; Hirano et al., 2003; Li et al., 2018; Zhao, 2019). Dong

et al. (2020) shows that the true propensity score balances the covariates in expectation be-

tween treatment groups in both the overall population and any subgroup defined by covariates.

However, the propensity scores are usually unknown in observational studies and must be first

estimated from the study sample, leading to estimated propensity scores that rarely coincide

with their true values. Moreover, good balance in the overall sample does not automatically

translate in good subgroup balance. In fact, our own experience suggests that severe covariate

imbalance in subgroups is common in real applications, which may consequently lead to bias

in estimating the subgroup causal effects. Despite routinely reporting effects in pre-specified

subgroups, medical studies rarely check subgroup balance, partially due to the lack of visualiza-

tion tools. Indeed, we conducted a literature review of all propensity-score-based comparative

effectiveness analyses published in the Journal of American Medical Association (JAMA) be-

tween January 1, 2017 and August 1, 2018. Of 16 relevant publications, half reported SGA

(2-22 subgroups per paper) but none reported any metrics of balance within subgroups.

The limited literature on propensity score methods in SGA suggests that the propensity

score model should be iteratively updated to include covariate-subgroup interactions until sub-

group balance is achieved (Green and Stuart, 2014; Wang et al., 2018). But this procedure

has not been implemented in practice, perhaps because it is cumbersome to manually check

interactions. More importantly, it may amplify the classic bias-variance tradeoff: increas-

ing complexity of the propensity score model may help to reduce bias but is also expected

to increase variance. Therefore, an effective approach would automatically achieve covariate

balance in subgroups while preserving precision. Machine learning methods offer a poten-

tial solution for estimating the propensity scores without pre-specifying necessary interactions.
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For example, generalized boosted models (GBM) have been advocated as a flexible, data-

adaptive method(McCaffrey et al., 2004), and random forest was superior to many other tree-

based methods for propensity score estimation in extensive simulation studies(Lee et al., 2010).

BART have been used to estimate the propensity score model and outperformed GBM on some

metrics of balance (Hill et al., 2011). However, it is unclear whether these methods achieve

adequate balance and precision in causal SGA. Moreover, when important subgroups are pre-

specified, a more effective approach would incorporate prior knowledge about the subgroups.

In this article, we develop a suite of analytical and visualization tools for causal SGA.

First, we introduce the estimand of subgroup weighted average treatment effect (S-WATE) and

provide the corresponding propensity score weighting estimator (Section 2). We show that

balance of covariates within a subgroup bounds the bias of the estimator of S-WATE (Section

3). Second, we design a new diagnostic graph, which we call the Connect-S plot, for visual-

izing the subgroup covariate balance (Section 4). Finally, we propose a method that combines

LASSO (Tibshirani, 1996) and overlap weighting (Li et al., 2018, 2019; Thomas et al., 2020a),

and balances the bias-variance tradeoff in causal SGA (Section 5). Specifically, we treat the

pre-specified subgroups as candidates for interactions with standard covariates in a logistic

propensity score model and use LASSO to select important interactions. We then capitalize

on the exact balance property of overlap weighting with a logistic regression to achieve good

covariate balance both overall and within subgroups, thus reducing bias and variance in causal

SGA. We conduct extensive simulation studies to compare the proposed method with several

alternative methods (Section 6), and illustrate its application in a motivating example (Section

7)

Our methodology is motivated from an observational comparative effectiveness study based

on the Comparing Options for Management: Patient-centered Results for Uterine Fibroids

(COMPARE-UF) registry (Stewart et al., 2018). Our goal is to evaluate alternative manage-
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ment options for uterine fibroids for relief of symptoms and quality of life. Subgroup analysis

was a primary aim to determine whether certain types of patient subgroups should receive

myomectomy versus hysterectomy procedures. Investigators pre-specified 35 subgroups of in-

terest based on categories of 16 variables including race, age, and baseline symptom severity.

In addition, 20 covariates were considered as potential confounders, including certain demo-

graphics, disease history, quality of life and symptoms. The total sample size is 1430, with 567

patients in the myomectomy group and 863 patients in the hysterectomy group. There are in

total 700 subgroup-confounder combinations, which pose great challenges to check and ensure

balance for causal analyses.

2 Estimands and estimation in causal subgroup analysis

2.1 Notation

Consider a sample of N individuals, where N1 units belong to the treatment group, denoted

by Z = 1, and N0 to the control group, denoted by Z = 0. Each unit i has two potential

outcomes Yi(1) and Yi(0) corresponding to the two possible treatment levels, of which only the

one corresponding to the actual treatment assigned is observed, Yi = ZiYi(1) + (1− Zi)Yi(0).

We also observe a vector of P pre-treatment covariates,Xi = (Xi1, ..., XiP )
T .

We denote the subgroups of interest by indicator variables Si = (Si1, ..., SiR)
T , where

Sir = 1 if the ith unit is a member of the rth(r = 1, ..., R) subgroup and 0 otherwise (e.g.

black race, male gender, and younger age). Usually, Sir = fr(Xi) for some function fr that

defines categories based onXi. The R groups are not required to be mutually exclusive, and a

unit i can belong to multiple subgroups. In fact, we are particularly interested in one-at-a-time

subgroup analysis where the groups compared are defined as Sir = 0 and Sir = 1 for each r,

while averaging over the levels of {Si1, ..., SiR} \ {Sir}. Nonetheless, to simplify notation in
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Section 2.2, we assume mutually exclusive subgroups so that
∑R

r=1 Sir = 1 hereafter.

The propensity score is e(Xi,Si) = Pr(Zi = 1|Xi,Si). When the components of Si are

functions of Xi, the dependence of the propensity score on the subgroup indicators could be

dropped. However, the sub-grouping variables Si may not all be a function of Xi. Further,

subgroups are most often defined based on physicians’ and patients’ prior knowledge with

respect to which covariates are important for selecting treatment or with respect to the outcome.

For this reason the true propensity score may be subgroup-specific in that relationships between

Xi and Zi depend on Si. For this reason, both the typical covariates Xi and the sub-grouping

variables Si are explicitly denoted.

2.2 The estimand: Subgroup weighted average treatment effect

Traditional causal inference methods focus on the average treatment effect (ATE), Ef [Y (1) −

Y (0)], where the expectation is over the sampled population with probability density f(x, s)

for the covariates and subgroups. Corresponding subgroup analysis would evaluate the sub-

group average treatment effect (S-ATE), τr = Ef [Y (1) − Y (0)|Sr = 1]. Recently there has

been increasing focus on weighted average treatment effects which represent average causal

effects over a different, potentially more clinically relevant populations(Crump et al., 2009; Li

et al., 2018; Tao and Fu, 2019; Zhao, 2019; Thomas et al., 2020b). We extend the weighted

average treatment effect to the context of subgroup analysis.

Let g(x, s) denote the covariate/subgroup density of the clinically relevant target popula-

tion. The ratio h(x, s)=g(x, s)/f(x, s) is called a tilting function (Li and Li, 2019), which

re-weights the distribution of the observed sample to represent the target population. De-

note the conditional expectation of the potential outcome in subgroup r with treatment z by

µrz(x) = Ef{Y (z)|X = x, Sr = 1} for z = 0, 1. Then, we can represent the subgroup

weighted average treatment effect (S-WATE) over the target population by:
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τr,h = Eg[Y (1)− Y (0)|Sr = 1] =
E{h(X,S)(µr1(X)− µr0(X))|Sr = 1}

E{h(X,S)|Sr = 1}
. (1)

In practice, we specify the target population by pre-specifying the tilting function h(x, s).

Different choices of the function h lead to different estimands of interest. For example, for

h(x, s) = 1 the S-WATE collapses to the S-ATE: τr,h ≡ τr. Another special case arises under

homogeneity when µr1(x)−µr0(x) is constant for allx and τr,h ≡ τr for all h. Several common

tilting functions will be discussed subsequently within the context of subgroup analysis.

To identify the S-WATE from observational data, we make two standard assumptions(Rosenbaum

and Rubin, 1983): (i) Unconfoundedness: Z ⊥⊥ {Y (1), Y (0)}|{X,S}, which implies that the

treatment assignment is randomized given the observed covariates, and (ii) Overlap (or posi-

tivity): 0 < e(Xi,Si) < 1, which requires that each unit has a non-zero probability of being

assigned to each treatment condition. Then, we can estimate the S-WATE in subgroup r, τr,h,

using the Hájek estimator

τ̂r,h =

∑N
i=1 ZiSirwi1Yi∑N
i=1 ZiSirwi1

−
∑N

i=1(1− Zi)Sirwi0Yi∑N
i=1(1− Zi)Sirwi0

, (2)

where the weights w are the balancing weights corresponding to the specific tilting function

h(x, s) (equivalently the target population g(x, s))(Li et al., 2018):
wi1 =

h(Xi,Si)

e(Xi,Si)
for Zi = 1,

wi0 =
h(Xi,Si)

1− e(Xi,Si)
for Zi = 0.

(3)

The most widely used balancing weights are the inverse probability weights (IPW)(Robins

et al., 2000), (w1 = 1/e(x, s), w0 = 1/(1− e(x, s)), corresponding to h(x, s) = 1. The target

population of IPW is the combination of treated and control patients that are represented by

the study sample, and the subgroup-specific estimand is the subgroup average treatment effect
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(S-ATE). Another balancing weight, which will play a key role in this paper (in Section 5),

are the overlap weights (OW), (w1 = 1 − e(x, s), w0 = e(x, s)), corresponding to h(x, s) =

e(x, s)(1 − e(x, s))(Li et al., 2018). The target population of OW is the population with the

most overlap in covariates between the treatment and control groups, and the subgroup-specific

estimand is the subgroup average treatment effect of the overlap population (S-ATO). These

weights are defined on the entire sample and are applicable to subgroups where the value of

Si is fixed and defines the subgroup of interest. We show in the Web Appendix 1.1 that τ̂r,h is

consistent for τr,h.

As we shall show in the next section, covariate balance in the subgroups is crucial for

unbiased estimation of the S-WATE. In practice, the propensity score, e(Xi,Si), is usually not

known and is estimated from the data. Then, the weights wi in (2) are replaced with ŵi based

on the estimated propensity score ê(Xi,Si). While balancing the true propensity score would

balance the covariates in all covariate-defined subgroups in expectation, the estimated weights

ŵi based on an estimated propensity score often fail to achieve covariate balance, particularly

within subgroups(Dong et al., 2020). Therefore, it may be beneficial to choose weights that

guarantee balance. In Section 5 we adapt the overlap weights for this purpose. Before we dive

into the question of how to balance, we first need address what to balance. Specifically, it is

necessary to first consider what functions of covariates (e.g. moments) should be balanced in

estimating subgroup ATEs and how this differs from estimation of the overall ATE. We address

this question in the next Section.

3 Bounding Bias for Subgroup Causal Effects

When focusing on additive models, Zubizarreta (Zubizarreta, 2015) showed that the weighting

estimator for the population mean is unbiased when the covariate means are balanced. We
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extend this work to subgroup analysis by showing that balance of covariates within a subgroup

leads to minimal bias of the estimator τ̂r,h. In Proposition (1), we show this result when the

treatment effect is homogeneous within a subgroup (τr,h = τr), and in Proposition (2) we

extend it to allow for within-subgroup effect heterogeneity. In both cases, treatment effects are

allowed to vary between subgroup levels.

Proposition 1 Suppose that the outcome surface satisfies an additive model, e.g. Yi(z) =∑R
r=1 βrSir+

∑R
r=1

∑P
p=1 βrpSirXip+

∑R
r=1 τrSirz+ εi(z), with E[εi(z)|Xi,Si] = 0. For any

weight wi that is normalized within subgroups (i.e.
∑N

i=1 ZiSirwi =
∑N

i=1(1− Zi)Sirwi = 1),

if mean balance holds in the rth subgroup, expressed as∣∣∣∣∣
N∑
i=1

ZiSirwiXip −
N∑
i=1

(1− Zi)SirwiXip

∣∣∣∣∣ < δ, for all p = 1, 2, . . . , P, (4)

then the bias is bounded for the rth subgroup, |E [τ̂r,h − τr]| < δ
∑P

p=1 |βrp| (Web Appendix

1.2).

Therefore, any weight for which δ ≈ 0 will eliminate bias for SGA when the outcome sat-

isfies an additive model. Proposition (1) illustrates that mean balance in the overall sample,∣∣∣∑N
i=1 ZiwiXip −

∑N
i=1(1− Zi)wiXip

∣∣∣ < δ, is not sufficient, and balance is required within

the subgroup. Even in the special case where the true response surface is additive in the co-

variates and the treatment effect is constant (βrp = βp, and τr = τ), the subgroup-specific

Condition (4) is still necessary to ensure minimal bias of τ̂r,h.

Proposition 2 Suppose the additive model is relaxed to allow treatment effect heterogeneity by

covariatesXi within subgroups: Yi(z) =
∑R

r=1 βrSir+
∑R

r=1

∑P
p=1 βrpSirXip+

∑R
r=1 τrSirz+∑P

p=1 γrpSirXipz+ εi(z), with E[εi(z)|Xi,Si] = 0. If Condition (4) holds and additionally,∣∣∣∣∣
N∑
i=1

ZiSirwiXip −
∑N

i=1 h(Xi,Si)SirXip∑N
i=1 h(Xi,Si)Sir

∣∣∣∣∣ < δ2, for all p = 1, 2, . . . , P, (5)
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then the bias is bounded for the rth subgroup, |E [τ̂r,h − τr,h]| < δ
∑P

p=1 |βrp| + δ2
∑P

p=1 |γrp|

(Web Appendix 1.3).

Condition (5) requires the weighted sample covariate mean of treated patients within the sub-

group to be close to the target population subgroup covariate mean. This condition can be veri-

fied when h is a pre-defined function, but not when h(Xi,Si) depends on an unknown propen-

sity score e(Xi,Si) (as in Section 5 below). However this term is expected to be small unless

the model for the propensity score is severely mis-specified. In the Web Appendix 1.4, we show

that an alternative, verifiable condition:

∣∣∣∣∣∑N
i=1 ZiSirwiXip −

∑N
i=1 ĥ(Xi,Si)SirXip∑N

i=1 ĥ(Xi,Si)Sir

∣∣∣∣∣ < δ2,

is sufficient if we are willing to estimate a slightly different estimand, namely, the subgroup-

sample weighted average treatment effect (S-SWATE), τr,ĥ =

∑
i ĥ(Xi,Si)[µr1(Xi,Si)− µr0(Xi,Si)]Sir∑

i ĥ(Xi,Si)Sir

.

Therefore, verifiable mean balance conditions are sufficient for τ̂r,h to have a causal interpreta-

tion, but the propensity score model must be approximately correct in order for the weighted

population to correspond to the target population and estimate τr,h.

It is instructive to consider the special case were h(Xi,Si) = 1 and the target population is

the sampled population. In this case, h is known and Condition (5) can be empirically verified.

However, it will not necessarily be satisfied for weights based on an estimated propensity score.

To the best of our knowledge, Condition (4) is typically checked but Condition (5) is not. Under

heterogeneous treatment effects this second condition is needed. In addition, this reveals a

potential risk of using weights that balance covariates without defining a tilting function and

target estimand (S-WATE) (Imai and Ratkovic, 2014; Zubizarreta, 2015; Li et al., 2018; Zhao,

2019). The implicit estimand is the S-ATE with h(Xi,Si) = 1. While these methods are

designed to satisfy Condition (4), Condition (5) does not play a role in the construction of the

weights and may be violated.

The assumption of linearity in the covariates can be relaxed and the non-linear case is

addressed in Web Appendix 1.6 (Proposition 4). We find that mean balance remains an impor-
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tant condition for unbiasedness, but various higher order moments are potentially important,

depending on the true model. Whether it would be practically feasible to pre-specify and in-

terpret the corresponding, higher order balance checks, particularly in finite samples, requires

future investigation. We do not undertake that here, but instead focus on correct estimation of

the propensity score model, coupled with mean balance which is sufficient in linear models

(above) and necessary in non-linear models.

4 Visualizing subgroup balance: The Connect-S plot

In practice, it is often difficult to assess whether existing propensity score methods achieve

the balance conditions defined in Section (3). For example, in the motivating application of

COMPARE-UF, there are 700 combinations of subgroups and covariates for which to check

Condition (4). In this Section we introduce a new graph for visualizing subgroup balance – the

Connect-S plot. We first introduce two important metrics that will be presented in the plot.

The first statistic is the absolute standardized mean difference(ASMD) (Austin and Stuart,

2015), which is widely used for measuring covariate balance. The ASMD is the difference

in weighted means, defined in Condition (4), further scaled by the pooled, weighted standard

deviation. That is

ASMDr,p =

∑N
i=1 ZiSirwiXip −

∑N
i=1(1− Zi)SirwiXip

sr,p
(6)

where sr,p is the weighted, pooled standard deviation for the rth subgroup and the pth covariate

(See Web Appendix 1.5 for details). Scaling by sr,p facilitates a practical interpretation of the

weighted mean difference, relative to the standard deviation of the variable Xp. Various rules

of thumb suggest that the ASMDr,p should be less than 0.10 or 0.20 (i.e. an acceptable δ is

¡0.10 to 0.20) (Austin and Stuart, 2015).
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The second metric concerns variance. In the context of SGA, the propensity score model

is typically complex, including many interaction terms. Therefore, a particularly important

consideration in propensity score weighting is the variance inflation due to model complexity.

Li et al. (2018) suggested to use the following statistic akin to the “design effect” approximation

of Kish (1965) in survey literature to approximate the variance inflation (VI):

VI = (1/N1 + 1/N0)
−1
∑
z=0,1

(
Nz∑
i=1

w2
iz

)/( Nz∑
i=1

wiz

)2

, (7)

where Nz is the sample size of treatment group z. For the unadjusted estimator, wiz = 1 for

all units. It is straightforward to define the subgroup-specific version of the variance inflation

statistic.

The Connect-S plot for S subgroups resembles the rectangular grid of a Connect4 game:

each row represents a subgroup variable, (e.g. a race group), and the name and subgroup

sample size is displayed at the beginning and the end of each row, respectively; each column

represents a confounder that we want to balance (e.g. age). Therefore, each dot corresponds to

a specific subgroup S and confounderX , and the shade of the dot is coded based on the ASMD

of confounder X in subgroup S, with darker color meaning more severe imbalance. The end

of each row also presents subgroup-specific approximate variance inflation.

Panel (a) of Figure 1 presents the Connect-S plot for COMPARE-UF after adjustment by

IPW where the propensity score for myomectomy versus hysterectomy is estimated by main

effects logistic regression. The bottom row of this panel shows that this method does a good

job of balancing the confounders, overall. However, it does a poor job of achieving balance

within subgroups. For example, subgroups based on age, symptom severity, EQ5D quality

of life score, and uterine volume have many ASMDs greater than 0.10 and often greater than

0.25. These are not generally acceptable and motivate alternative methodology. A potential

solution would be to use a more flexible model for the propensity score that does not assume
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main effects. Panel (b) of Figure 1 shows that balance in COMPARE-UF is not improved by

estimating the propensity score with generalized boosted models and results were similar for

random forest and BART methods (Web Appendix 2.3)

5 Combining overlap weighting with LASSO for causal sub-

group analysis

To achieve the balance constraints in Section 3 and maintain precision, we propose a method

that combines overlap weighting and LASSO for variable selection (Tibshirani, 1996) in the

propensity score model. Overlap weighting was defined in Section 2.2, where h(x, s) =

e(x, s)(1 − e(x, s)) in equation (3) and τr,h is the subgroup average treatment effect in the

overlap population (S-ATO)(Li et al., 2018). The overlap population arises because h(x, s)

approaches 0 for individuals who are nearly always treated (e(x, s) = 1), or never treated

(e(x, s) = 0) and is maximized for those who are equally likely to be treated or not (e(x, s) =

0.5) given their covariates. Thus, the tilting function emphasizes covariate profiles that most

overlap between treatment groups. The overlap target population mimics the characteristics

of a pragmatic randomized trial that is highly inclusive, excluding no study participants from

the available sample, but emphasizing the comparison of patients at clinical equipoise. When

the S-ATO is clinically relevant, its corresponding weighting estimator has attractive properties

regarding variance and balance as described below.

First, OWs are naturally bounded between 0 and 1, thus can avoid the issues of extreme

weights and large variability that can occur when h(x, s) = 1. In fact, the overlap tilting func-

tion h(x, s) = e(x, s)(1 − e(x, s)) gives the smallest large-sample variance of the weighted

estimator τ̂r,h over all possible h under homoscedasticity (Web Appendix 1.1). This property

is particularly attractive for subgroup analysis to mitigate the potential variance inflation that
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arises from a more complex propensity score model that includes subgroup-covariate interac-

tions, and where subgroup-specific sample sizes are small.

Second, OWs have a desirable small-sample property of exact balance. Specifically, outside

the context of SGA, Li et al. (2018) show that when the propensity score is estimated by a

logistic regression, overlap weighting leads to exact balance on the weighted covariate means.

We extend this property to subgroups as follows.

Proposition 3 If the postulated propensity score model is logistic regression with subgroup-

covariate interactions, i.e. ê(Xi,Si) = logit−1(α̂0+X
T
i α̂x+S

T
i α̂s+(Xi ·Si)

T α̂xs), where

α̂ = (α̂0, α̂
T
x , α̂

T
s , α̂

T
xs)

T is the maximum likelihood (ML) estimator and (Xi · Si) denotes

all pairwise interactions between Xi and Si, then the OWs lead to exact mean balance in the

subgroups and overall:

N∑
i=1

ZiSirXipŵi −
N∑
i=1

(1− Zi)SirXipŵi = 0, for all r = 1, ..., R, and p = 1, ..., P.

Again the weights need to be normalized such that
∑N

i ZiSirŵi =
∑N

i (1−Zi)Sirŵi = 1 (Web

Appendix 1.5).

Proposition 3 implies that when logistic regression is augmented to include (Xi · Si) and

paired with OW, exact balance is achieved overall and within subgroups, i.e. δ = 0 in Propo-

sition 1. Additionally, the approach can be motivated by focusing on correct specification of

the propensity score model in the scientific context. When subgroups are defined a priori it

is usually based on clinical knowledge of which patient characteristics are most likely to alter

the treatment effect. Thus treatment decisions in the observational data may already be differ-

ent in these subgroups, corresponding to covariate-subgroup interactions in the true propensity

score model. This motivates the inclusion of pre-specified subgroups as candidates for interac-

tions with standard covariates in the propensity score model. However, as the propensity score

15



model approaches saturation, the estimated propensity scores will converge to 0 and 1, thus

causing variance inflation in the treatment effect estimates. This problem is mitigated by the

OW. Nonetheless, when the number of covariates and/or subgroups is large, variable selection

in the propensity score model is necessary.

We propose starting with a propensity model that has all pairwise interactions between

covariates and prespecified subgroup candidates, and then use LASSO to select important in-

teractions. This approach helps achieve covariate balance in the subgroups and mitigate the

over-fitting issue in propensity score model. Note, in causal settings regularization inadver-

tently biases treatment effect estimates by over-shrinking regression coefficients (Hahn et al.,

2018). Hence, we adopt the Post-LASSO approach(Belloni and Chernozhukov, 2013; James

et al., 2013): we refit the logistic regression with LASSO selected covariate-subgroup pairs to

maintain the overlap weights’ exact balance property.

6 Simulations

We compare the proposed method (referred to as Post-LASSO OW hereafter) with a number

of popular machine learning propensity score methods via simulations under different levels of

confounding, sparsity and heterogeneity in causal SGA.

6.1 Simulation Design

Data Generating Process. In alignment with the COMPARE-UF study we generate N = 3000

patients, with P ∈ {18, 48} independent covariates Xi, half of which drawn from a standard

normal distribution N(0, 1), and the other half from Bernoulli(0.3). Two subgroup variables

Si = (Si1, Si2) are independently drawn from Bernoulli(0.25). The treatment indicator Zi is
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generated from Bernoulli(e(Xi,Si)), with the true propensity score model:

logit(e(Xi,Si)) = αr + S
T
i αs +X

T
i αx + (Xi · Si)

Tαxs, (8)

with coefficients α = (αr,α
T
s ,α

T
x ,α

T
xs)

T .

We set the coefficients in model (8) as follows: αr = −2, αT
s = (1, 1). Out of the P

coefficients in αx, ψ portion of them have nonzero coefficients (i.e. true confounders in our

simulation). The coefficients for the continuous and binary confounders take equally distanced

values between (0.25γ, 0.5γ), separately, and the rest are zeros. Last, we set αxs = −αxκ.

To create a range of realistic scenarios in SGA we vary the three hyperparameters (ψ, γ, κ)

in the true propensity score model: 1) ψ ∈ {0.25, 0.75} controls the proportion of covariates

Xi that are true confounders; 2) γ ∈ {1, 1.25, 1.5} controls the scale of the regression coef-

ficients for Xi, and 3) κ ∈ {0.25, 0.5, 0.75} scales the regression coefficients for (Xi · Si).

For example, for P = 18, γ = 1, ψ = 0.25, and κ = 0.5, the above setting specifies

αT
x = (0.25, 0.5,07, 0.25, 0.5,07),α

T
xs = (−0.125,−0.25,07,−0.125,−0.25,07), where 0k

is a k-vector of zeros. The above simulation settings mimic a common SGA situation in clin-

ical studies. Specifically, when S1 = 1, S2 = 1, the two subgroup variables represent high

risk conditions associated with the outcome (e.g. risk score) and increase the likelihood of

being treated. In the presence of these high risk conditions, other patient characteristics Xi

play a lesser role in driving treatment decisions; this is reflected by the fact that magnitude of

αx in the propensity model is smaller than αs. In the Web Appendix 2.1 we show that these

specifications lead to treated and control units with various overlapping true propensity score

distributions.

Next, a continuous outcome Yi (e.g. risk score) is generated from a linear regression model:

Yi = β0 +X
T
i βx + S

T
i βs + βzZi + (Si · Zi)

Tβsz + εi, (9)

where (Si ·Zi) is a vector of all possible interactions between subgroup variables and treatment
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assignment, and εi is independently sampled fromN(0, 1). We fix the model parameter β0 = 0,

βx = αx, βT
s = (0.8, 0.8), βz = −1, and vary βT

sz = (β1z, β2z)
T ∈ {(0, 0), (0.5, 0.5)}. When

βT
sz = (0, 0), the treatment effect is homogeneous, and τr = βz = −1 for all subgroups.

When βT
sz = (0.5, 0.5), the underlying treatment effect is heterogeneous within subgroups and

between different subgroup levels. For example, when P = 18, ψ = 0.25, γ = 1, κ = 0.75,

the true causal effect τh = −0.67 for ATO, and −0.75 for ATE; τ{S1=0,h} = τ{S2=0,h} = −0.83

for S-ATO, and −0.87 for S-ATE; τ{S1=1,h} = τ{S2=1,h} = −0.35 for S-ATO, and −0.37 for

S-ATE.

Postulated propensity score models. To estimate the propensity scores, we compare Post-

LASSO with several popular alternatives in the literature: (1) True model: Logistic regres-

sion fitted via maximum likelihood (ML) with the correctly specified propensity score (8),

representing the oracle reference; (2) Logistic-Main: logistic regression with only main ef-

fects of the predictors (Xi,Si) fitted via ML, representing the standard practice; (3) LASSO:

LASSO(Tibshirani, 1996) with the design matrix (Xi,Si,Xi ·Si), implemented by the R pack-

age glmnet without penalizing the main effects, and ten-fold cross validation is used for hyper-

parameter tuning;(Friedman et al., 2010) (4) Post-LASSO: Logistic regression model fitted via

ML with the variables selected from the preceding LASSO(Belloni et al., 2013); (5) RF-Main:

Random Forest (RF) (Breiman, 2001; Wager and Athey, 2018) with the design matrix (Xi,Si),

implemented by R package ranger with default hyperparameters and 1000 trees(Wright and

Ziegler, 2015); (6) RF-All: RF with the augmented design matrix (Xi,Si,Xi · Si); Among

the examined scenarios, we observe no difference between the RF-All and RF-Main PS model,

suggesting that RFs performance depends little on the provided design matrix. For simplic-

ity, we omit results on RF-All; (7) GBM: Generalized boosted model (GBM) (Bühlmann

and Yu, 2003; McCaffrey et al., 2004) with the design matrix (Xi,Si), implemented by R

package twang with 5000 trees, interaction depth equals to 2, and other default hyperparam-
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eters(Ridgeway et al., 2017); (8) BART: Bayesian additive regression trees (Chipman et al.,

2010) with the design matrix (Xi,Si), using the R function pbart in package BART with de-

fault hyperparameters(McCulloch et al., 2019).

Each of the preceding propensity score models is paired with (a) inverse probability of

treatment weighting (IPW) and (b) overlap weighting (OW). All the simulation analyses are

conducted under R version 3.4.4. In total, there are 72 scenarios examined by the factorial

design, with 100 replicate data sets generated per scenario.

Performance metrics. The performance of different approaches is compared overall (aver-

aged over subgroups) and within four subgroups defined by Si1 = 0, Si1 = 1, Si2 = 0, Si2 = 1.

First, we check balance of covariates by the ASMD of each covariate, averaged across the 100

simulated data sets, and calculate the maximum ASMD value across all covariates. Second,

we consider the relative bias and root mean squared error (RMSE) to study the precision and

stability of various estimators.

6.2 Simulation Results

Covariate balance (AMSD), bias, and RMSE of the various estimators based on different pos-

tulated propensity score models and weighting schemes in the simulations are shown in Web

Figure 2, Figure 2, and Figure 3, respectively.

Balance. From Web Figure 2, we can see that OW estimators achieve better covariate bal-

ance than IPW estimators across all propensity score models. The true propensity score model

and OW achieves perfect balance for the true confounders in all subgroups. This is expected

given OW’s exact balance property for any included covariate-subgroup interactions (propo-

sition 3). Within the same weighting scheme, the LASSO and Post-LASSO model perform

similarly, resulting in smaller ASMDs than the other methods. The Logistic-Main leads to sat-

isfactory balance in the overall sample and the baseline subgroups (i.e. S1 = 0 and S2 = 0), but

19



fails to balance the covariates in the S1 = 1 and S2 = 1 subgroups, particularly when paired

with IPW. The RF models result in inferior balance performance (measured using ASMDs), oc-

casionally leading to severe subgroup imbalances. BART and GBM perform similarly, which

lie between the Logistic-Main and the LASSO models.

Bias. From Figure 2, we can see that OW results in lower bias than IPW, for each propensity

score modeling approach, both the overall and the subgroup effects. Between the different

propensity score models, the pattern follows closely the degree of covariate imbalance. We

find that Post-LASSO OW returns the smallest bias within each subgroup and overall. LASSO

is slightly inferior to Post-LASSO, likely due to the shrinkage induced bias. The common

practice of using Logistic-Main IPW overestimates treatment effect in the baseline subgroups

and greatly underestimates treatment effect in the S1 = 1 and S2 = 1 subgroups. If the same

estimated propensity scores are paired with OW, the resulting estimates are much closer to the

truth, and the bias for subgroups S1 = 1 and S2 = 1 is reduced to half. BART and GBM

perform slightly better than the Logistic-Main and RFs model. Web Figure 3-4 provides more

details of subgroup bias across a range of settings. Specifically, we find that the Logistic-Main

IPW is much more sensitive to the simulation parameter specification compared to the Post-

LASSO OW. For example, it leads to substantial bias in estimating S-ATE under scenarios with

more confounders and stronger confounding effects (i.e. larger P and ψ, larger γ and κ values).

RMSE. From Figure 3 we can see that, with the same propensity score model, the RMSE is

generally higher for IPW than for OW. This is expected, due to (i) the improved balance and (ii)

the minimum variance property of OW. Neither the Logistic-Main nor the RF models capture

the interactions in the true PS model and consequently result in large biases and variances of

subgroup effects. This suggests that the RF models under our chosen hyperparameter settings

are inadequate in learning the interactions (when given main effects only) or performing vari-

able selection (when given the fully-expanded design matrix including subgroup interactions),
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leading to inaccurate and noisy treatment estimates. In contrast, LASSO coupled with OW

provides low bias and high efficiency. Post-LASSO further improves upon LASSO across all

the simulation settings we explored. Similarly to the previous observations, magnitude of the

RMSE from BART and GBM is between that from the LASSO and Logistic-Main model. Web

Figure 5-6 demonstrate the RMSE of Post-LASSO OW is invariant to regression coefficients,

while larger P and ψ, larger γ and κ values greatly increase the RMSE of the IPW main effect

model.

To summarize, OW estimators achieve better covariate balance, smaller relative bias and

RMSE than IPW estimators across various propensity score models. The proposed method

(Post-LASSO OW) leads to low bias and high efficiency in estimating subgroup causal effects,

suggesting LASSO successfully selects the important subgroup-covariate interactions across

simulation scenarios. In contrast, the standard Logistic-Main as well as alternative machine

learning models for the propensity scores lead to large bias and RMSE in estimating the sub-

group causal effects, particularly under moderate and strong confounding.

7 Application to COMPARE-UF

We now apply the proposed method to our motivating study of myomectomy versus hysterec-

tomy in the 35 pre-specified subgroups of COMPARE-UF. In panel (c) Figure 1 the balance

based on ASMD is substantially improved by OW with Post-LASSO though still not perfect.

To save space in the comparison of methods we only show 6 subgroups. Additional results for

all subgroups were similar and are available in the Web Appendix 2.3. The only subgroup for

which good balance was not achieved is age less than 35, though it was improved compared

to other methods. The challenge in balancing this subgroup is not surprising given the limited

sample size and extreme imbalances that were initially present. We would recommend that
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comparative statements about this subgroup should be made very cautiously.

Figure 4 displays estimated treatment effects for the primary quality of life endpoint, UFS-

QOL score one year after the procedures. The proposed method, Post-LASSO OW is compared

to the standard Logistic-Main IPW. In some subgroups, including many of those not shown, the

results of Post-LASSO OW confirm those of Logistic-Main IPW. However, some potentially

important signals arise. Post-LASSO OW reveals different treatment effects in the subgroups

defined by baseline symptom severity. Individuals with mild symptom severity (<30) at base-

line have similar outcomes with hysterectomy or myomectomy, whereas subgroups with higher

initial symptoms (30-69, >70) receive a larger improvement in overall quality of life with hys-

terectomy. This is expected clinically, as hysterectomy entirely eliminates symptoms whereas

symptoms can recur with myomectomy. Those with the greatest initial symptoms would have

the most to gain. The results of Logistic-Main IPW did not detect this difference. This is

consistent with Figure 1 where covariate imbalances after weighting by Logistic-Main IPW

were corrected by Post-LASSO OW. A similar pattern was observed for the subgroups based

on uterine volume. Post-LASSO OW indicated that women with lower uterine volume had

significantly larger benefits from hysterectomy. This result is not immediately intuitive, but

may be related to the fact that women with lower uterine volume also had higher pain and

self-consciousness score at baseline and therefore more to gain from a complete solution. This

finding was obscured by Logistic-Main IPW because large imbalances in the baseline covari-

ates favored myomectomy.

The COMPARE-UF data exemplify an additional advantage of Post-LASSO OW, in the

creation of a clinically relevant target population that emphasizes patients who are reasonably

comparable, for all subgroups (S-ATO). To illustrate the shift in target population we display

the propensity score distributions by subgroups after weighting. Figure 5 illustrates two fea-

tures of Logistic-Main IPW: (1) IPW has not made the hysterectomy and myomectomy groups
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similar; (2) The cohort is dominated by individuals at the extremes, with propensity values

near 0 or 1. In contrast, the distributions in Figure 6 (resulting from Post-LASSO OW) are

mostly overlapping for hysterectomy versus myomectomy and emphasize people with propen-

sity scores away from 0 and 1. While Logistic-Main IPW could be improved by iterative

corrections, such as range trimming, or adapting the propensity score model, these steps would

be cumbersome in COMPARE-UF to implement manually across 35 subgroups. Instead, Post-

LASSO OW automatically finds a population at clinical equipoise, for whom comparative data

are most essential, across all subgroups. The resulting overlap cohort is displayed through a

weighted baseline characteristics table in Web Appendix 2.3.

8 Discussion

As researchers look for real world evidence of comparative effectiveness in increasingly di-

verse and heterogeneous populations, it is crucial to advance appropriate methods for causal

subgroup analysis with observational data. In this paper we developed a suite of propensity

score weighting methods and visualization tools for such a goal. We showed that it is essen-

tial to balance covariates within a subgroup, which bounds the estimation bias of subgroup

causal effects. We further proposed a method that aims to balance the bias-variance trade-off

in causal subgroup analysis. Our method combines Post-LASSO for selecting the propensity

score model and overlap weighting for achieving exact balance within each subgroup. We con-

ducted extensive simulations to examine the operating characteristics of the proposed method.

We found that pairing Post-LASSO with overlap weighting performed superior to several other

commonly used methods in terms of balance, precision and stability. Our method automat-

ically provides weights that can be used across complimentary analyses of population ATE

and subgroup-specific effects. It is particularly relevant to clinically meaningful subgroups
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which physicians have the subject matter knowledge. The coupling of prior information, to

generate candidate interactions, as well as machine learning for variable selection, may not

only improve SGA but also the validity of the propensity score model for population average

comparisons. As we move beyond SGA, using the knowledge of pre-specified subgroups to

build the propensity score model may reduce bias in a range of propensity-score-based HTE

methods.

We emphasized SGA with pre-specified subgroups in observational studies, while alterna-

tive methods and settings for HTE are rapidly developing. For example, Luedtke and van der

Laan (2017) showed that studying the additive treatment effect in SGA is similar to solving

an optimization question when estimating the mean outcome. Recent research further recom-

mends to select optimal subgroups based on the outcome mean difference between the effects

and move away from one-covariate-at-a-time type of SGA (VanderWeele et al., 2019). Similar

to their idea, our method simultaneous uses all important covariates to make decisions.

The proposed methods maintain the causal inference principle of separating study design

from analysis of outcomes. These methods allow an analyst to thoroughly investigate the model

adequacy and balance without risk of being influenced by observing various treatment effects.

Recent developments in causal inference are moving to incorporate information on the outcome

in the propensity score estimation (Shortreed and Ertefaie, 2017). When the candidate list of

covariates is large, and investigators are not able to prioritize covariates, using the outcome

data may be helpful. Future research could adapt the proposed method to incorporate outcome

information.

We also designed a new diagnostic graph—the Connect-S plot—that allows visualizing

subgroup balance for a large number of subgroups and covariates simultaneously. We hope the

Connect-S plot and the associated programming code would facilitate more routine check of

subgroup balance in comparative effectiveness research.
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The Web appendix and R code with implementation details used in this paper are provide

at: https://github.com/siyunyang/OW_SGA.
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Figure 1: The Connect-S plot of the subgroup ASMD and approximate variance inflation in

COMPARE-UF after applying balancing weights for adjustment by (a) Logistic-Main IPW,

propensity score estimated by main effects logistic regression with IPW; (b) GBM IPW,

propensity score estimated by generalized boosted models with IPW; (c) Post-LASSO OW,

propensity score estimated by post-LASSO with OW. Select subgroups are displayed in rows

and all confounders are displayed in columns.
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Figure 2: Bias in estimating the overall WATE and the four subgroup S-WATE across differ-

ent postulated propensity models and weighting schemes. Each dot represents one of the 72

simulation scenarios.
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Figure 3: RMSE in estimating the overall WATE and the four subgroup S-WATE across dif-

ferent propensity models and weighting schemes. Values greater than 10 are truncated at 10.

Each dot represents one of the 72 simulation scenarios.
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Figure 4: Estimates and 95% confidence intervals for treatment comparison of Myomectomy

to Hysterectomy. Weighted means are reported and then contrasted.
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Figure 5: Propensity score distributions by treatment after weighting, by Logistic-Main IPW.
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Figure 6: Propensity score distributions by treatment after weighting, by Post-LASSO OW.
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